Enhancing Osteochondral Tissue Regeneration of Gellan Gum by Incorporating Gallus gallus var Domesticus-Derived Demineralized Bone Particle

  • Muthukumar Thangavelu
  • David Kim
  • Young Woon Jeong
  • Wonchan Lee
  • Jun Jae Jung
  • Jeong Eun Song
  • Rui L. Reis
  • Gilson KhangEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1250)


Treatment for the osteochondral defects (ODs) is more challenging nowadays that needs to be addressed by developing alternative bone tissue engineering materials. Gellan gum (GG) is a widely used natural polysaccharide in the field of tissue engineering (TE) and regenerative medicine due to its versatile properties. There are many reports about the successful application of GG in cartilage tissue engineering and guiding bone formation. Functional coatings and porous composite materials have been introduced in next-generation materials for treating OD, whereas osteoconductive materials, such as demineralized bone particle (DBP) or bone derivatives, are used. However, modification of porosity, biocompatibility, cell proliferation, and mechanical properties is needed. DBP can activate human mesenchymal stem cells to differentiate into osteoblast cells. In this chapter, the potential application of GG with DBP in different combinations was reviewed, and the best suitable combinations were selected and further studied in small animal models for the soft and hard tissue engineering applications; also its application in the osteochondral integration fields were briefly discussed.


Osteochondral defect Gellan gum Demineralized bone particle Osteoarthritis Biomaterial Scaffold Osteochondral defects Tissue engineering Hydrogel 



This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (grant number: HI15C2996), and the International Research and Development Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2017K1A3A7A03089427).


  1. 1.
    Hunter DJ (2009) Risk stratification for knee osteoarthritis progression: a narrative review. Osteoarthr Cartil 17(11):1402–1407PubMedGoogle Scholar
  2. 2.
    Li X, Ding J, Wang J et al (2015) Biomimetic biphasic scaffolds for osteochondral defect repair. Regen Biomater 2(3):221–228PubMedPubMedCentralGoogle Scholar
  3. 3.
    Lee WY, Wang B (2017) Cartilage repair by mesenchymal stem cells: clinical trial update and perspectives. J Orthop Translat 9:76–88PubMedPubMedCentralGoogle Scholar
  4. 4.
    Csaki C, Schneider PR, Shakibaei M (2008) Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Ann Anat 190(5):395–412PubMedPubMedCentralGoogle Scholar
  5. 5.
    Murphy L, Helmick CG (2012) The impact of osteoarthritis in the United States: a population-health perspective: a population-based review of the fourth most common cause of hospitalization in U.S. adults. Orthop Nurs 31(2):85–91PubMedGoogle Scholar
  6. 6.
    Centers for Disease Control and Prevention (2010) Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation. United States, 2007–2009.
  7. 7.
    Laskin RS (1978) Unicompartmental tibiofemoral resurfacing arthroplasty. J Bone Joint Surg Am 60(2):182–185PubMedGoogle Scholar
  8. 8.
    Jakobsen RB, Engebretsen L, Slauterbeck JR (2005) An analysis of the quality of cartilage repair studies. J Bone Joint Surg Am 87(10):2232–2239PubMedGoogle Scholar
  9. 9.
    Lynn AK, Brooks RA, Bonfield W et al (2004) Repair of defects in articular joints. Prospects for material-based solutions in tissue engineering. J Bone Joint Surg (Br) 86(8):1093–1099Google Scholar
  10. 10.
    Redman SN, Oldfield SF, Archer CW (2005) Current strategies for articular cartilage repair. Eur Cell Mater 9:23–32. discussion 23-32PubMedGoogle Scholar
  11. 11.
    Sgaglione NA (2004) The future of cartilage restoration. J Knee Surg 17(4):235–243PubMedGoogle Scholar
  12. 12.
    Nooeaid P, Salih V, Beier JP et al (2012) Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 16(10):2247–2270PubMedPubMedCentralGoogle Scholar
  13. 13.
    Deng C et al (2019) Micro/nanometer-structured scaffolds for regeneration of both cartilage and subchondral bone. Adv Funct Mater 29(4):1806068Google Scholar
  14. 14.
    Deng C et al (2018) Bioactive scaffolds for regeneration of cartilage and subchondral bone interface. Theranostics 8(7):1940–1955PubMedPubMedCentralGoogle Scholar
  15. 15.
    Magill P, Byrne DP, Baker JF et al (2011) Review article: Osteochondral reconstruction and grafting. J Orthop Surg (Hong Kong) 19(1):93–98Google Scholar
  16. 16.
    Das RK, Gocheva V, Hammink R et al (2016) Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nat Mater 15(3):318–325PubMedGoogle Scholar
  17. 17.
    Liu X, Jin X, Ma PX (2011) Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nat Mater 10(5):398–406PubMedPubMedCentralGoogle Scholar
  18. 18.
    Seo SJ, Mahapatra C, Singh RK et al (2014) Strategies for osteochondral repair: focus on scaffolds. J Tissue Eng 5:2041731414541850PubMedPubMedCentralGoogle Scholar
  19. 19.
    Brittberg M, Lindahl A, Nilsson A et al (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895PubMedGoogle Scholar
  20. 20.
    da Cunha Cavalcanti FM, Doca D, Cohen M et al (2015) Updating on diagnosis and treatment of chondral lesion of the knee. Rev Bras Ortop 47(1):12–20PubMedPubMedCentralGoogle Scholar
  21. 21.
    Shimomura K et al (2010) The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials 31(31):8004–8011PubMedGoogle Scholar
  22. 22.
    Makris EA, Gomoll AH, Malizos KN et al (2015) Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 11(1):21–34Google Scholar
  23. 23.
    Mithoefer K et al (2006) Chondral resurfacing of articular cartilage defects in the knee with the microfracture technique. Surgical technique. J Bone Joint Surg Am 88(Suppl 1, Pt 2):294–304PubMedGoogle Scholar
  24. 24.
    He A, Liu L, Luo X et al (2017) Repair of osteochondral defects with in vitro engineered cartilage based on autologous bone marrow stromal cells in a swine model. Sci Rep 7:40489PubMedPubMedCentralGoogle Scholar
  25. 25.
    Deng C, Chang J, Wu C (2018) Bioactive scaffolds for osteochondral regeneration. J Orthop Translat 17:15–25PubMedPubMedCentralGoogle Scholar
  26. 26.
    Hunziker EB, Quinn TM, Hauselmann HJ (2002) Quantitative structural organization of normal adult human articular cartilage. Osteoarthr Cartil 10(7):564–572PubMedGoogle Scholar
  27. 27.
    Zhang Y, Wang F, Tan H et al (2012) Analysis of the mineral composition of the human calcified cartilage zone. Int J Med Sci 9(5):353–360PubMedPubMedCentralGoogle Scholar
  28. 28.
    Noyes FR, Stabler CL (1989) A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med 17(4):505–513PubMedGoogle Scholar
  29. 29.
    Acebes C, Roman-Blas JA, Delgado-Baeza E et al (2009) Correlation between arthroscopic and histopathological grading systems of articular cartilage lesions in knee osteoarthritis. Osteoarthr Cartil 17(2):205–212PubMedGoogle Scholar
  30. 30.
    Custers RJH, Creemers LB, Verbout AJ et al (2007) Reliability, reproducibility and variability of the traditional histologic/histochemical grading system vs the new OARSI osteoarthritis cartilage histopathology assessment system. Osteoarthr Cartil 15(11):1241–1248PubMedGoogle Scholar
  31. 31.
    Ulrich-Vinther M, Maloney MD, Schwarz EM et al (2003) Articular cartilage biology. J Am Acad Orthop Surg 11(6):421–430PubMedGoogle Scholar
  32. 32.
    Curl WW, Krome J, Gordon ES et al (1997) Cartilage injuries: a review of 31,516 knee arthroscopies arthroscopy. Arthroscopy 13(4):456–460PubMedGoogle Scholar
  33. 33.
    Upmeier H, Brüggenjürgen B, Weiler A et al (2007) Follow-up costs up to 5 years after conventional treatments in patients with cartilage lesions of the knee. Knee Surg Sports Traumatol Arthrosc 15(3):249–257PubMedGoogle Scholar
  34. 34.
    McNickle AG, Provencher MT, Cole BJ (2008) Overview of existing cartilage repair technology. Sports Med Arthrosc Rev 16(4):196–201PubMedGoogle Scholar
  35. 35.
    Gantar A, da Silva LP, Oliveira JM et al (2014) Nanoparticulate bioactive-glass-reinforced gellan-gum hydrogels for bone-tissue engineering. Mater Sci Eng C 43:27–36Google Scholar
  36. 36.
    Khang G et al (2015) Biological evaluation of intervertebral disc cells in different formulations of gellan gum-based hydrogels. J Tissue Eng Regen Med 9(3):265–275PubMedGoogle Scholar
  37. 37.
    Stevens LR, Gilmore KJ, Wallace GG et al (2016) Tissue engineering with gellan gum. Biomater Sci 4(9):1276–1290Google Scholar
  38. 38.
    Morris ER, Nishinari K, Rinaudo M (2012) Gelation of gellan – a review. Food Hydrocoll 28(2):373–411Google Scholar
  39. 39.
    Fialho AM, Moreira LM, Granja AT et al (2008) Occurrence, production, and applications of gellan: current state and perspectives. Appl Microbiol Biotechnol 79(6):889–900PubMedGoogle Scholar
  40. 40.
    Kim HS et al (2019) Engineering retinal pigment epithelial cells regeneration for transplantation in regenerative medicine using PEG/gellan gum hydrogels. Int J Biol Macromol 130:220–228Google Scholar
  41. 41.
    Anandan D, Madhumathi G, Nambiraj NA et al (2019) Gum based 3D composite scaffolds for bone tissue engineering applications. Carbohydr Polym 214:62–70PubMedGoogle Scholar
  42. 42.
    Bonifacio MA et al (2018) Antibacterial effectiveness meets improved mechanical properties: Manuka honey/gellan gum composite hydrogels for cartilage repair. Carbohydr Polym 198:462–472PubMedGoogle Scholar
  43. 43.
    Bonifacio MA et al (2018) Data on Manuka honey/gellan gum composite hydrogels for cartilage repair. Data Brief 20:831–839PubMedPubMedCentralGoogle Scholar
  44. 44.
    Costa L, Silva-Correia J, Oliveira JM et al (2018) Gellan gum-based hydrogels for osteochondral repair. Adv Exp Med Biol 1058:281–304Google Scholar
  45. 45.
    Prajapati VD, Jani GK, Zala BS et al (2013) An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydr Polym 93(2):670–678Google Scholar
  46. 46.
    Song JE, Lee SE, Cha SR et al (2016) Inflammatory response study of gellan gum impregnated duck’s feet derived collagen sponges. J Biomater Sci Polym Ed 27(15):1495–1506PubMedGoogle Scholar
  47. 47.
    Vieira S, Da Silva MA, Garet E et al (2019) Self-mineralizing Ca-enriched methacrylated gellan gum beads for bone tissue engineering. Acta Biomater 93:74–85PubMedGoogle Scholar
  48. 48.
    Vuornos K et al (2019) Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels. Mater Sci Eng C Mater Biol Appl 99:905–918PubMedGoogle Scholar
  49. 49.
    Xu Z, Li Z, Jiang S et al (2018) Chemically modified Gellan gum hydrogels with tunable properties for use as tissue engineering scaffolds. ACS Omega 3(6):6998–7007PubMedPubMedCentralGoogle Scholar
  50. 50.
    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), Younes M, Aggett P et al (2018) Re-evaluation of gellan gum (E 418) as food additive. EFSA J 16(6):e05296Google Scholar
  51. 51.
    Mano JF et al (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4(17):999–1030PubMedPubMedCentralGoogle Scholar
  52. 52.
    Ciardelli G et al (2005) Blends of poly-(epsilon-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules 6(4):1961–1976PubMedGoogle Scholar
  53. 53.
    Oliveira JT et al (2010) Gellan gum: a new biomaterial for cartilage tissue engineering applications. J Biomed Mater Res A 93(3):852–863PubMedGoogle Scholar
  54. 54.
    Vilela CA et al (2018) In vitro and in vivo performance of methacrylated gellan gum hydrogel formulations for cartilage repair. J Biomed Mater Res A 106(7):1987–1996PubMedGoogle Scholar
  55. 55.
    Pereira DR, Silva-Correia J, Oliveira JM et al (2018) Nanocellulose reinforced gellan-gum hydrogels as potential biological substitutes for annulus fibrosus tissue regeneration. Nanomed Nanotechnol Biol Med 14(3):897–908Google Scholar
  56. 56.
    Baek JS et al (2019) Evaluation of cartilage regeneration in gellan gum/agar blended hydrogel with improved injectability. Macromol Res 27(6):558–564Google Scholar
  57. 57.
    Jeon HY, Shin EY, Choi JH et al (2018) Evaluation of Saponin loaded gellan gum hydrogel scaffold for cartilage regeneration. Macromol Res 26(8):724–729Google Scholar
  58. 58.
    Oliveira JT et al (2010) Gellan gum injectable hydrogels for cartilage tissue engineering applications: in vitro studies and preliminary in vivo evaluation. Tissue Eng Part A 16(1):343–353Google Scholar
  59. 59.
    Shin EY, Park JH, Shin ME et al (2019) Evaluation of chondrogenic differentiation ability of bone marrow mesenchymal stem cells in silk fibroin/gellan gum hydrogels using miR-30. Macromol Res 27(4):369–376Google Scholar
  60. 60.
    Carvalho CR et al (2018) Gellan gum-based luminal fillers for peripheral nerve regeneration: an in vivo study in the rat sciatic nerve repair model. Biomater Sci 6(5):1059–1075Google Scholar
  61. 61.
    Silva-Correia J, Miranda-Gonçalves V, Salgado AJ et al (2012) Angiogenic potential of gellan-gum-based hydrogels for application in nucleus Pulposus regeneration: in vivo study. Tissue Eng Part A 18(11–12):1203–1212PubMedGoogle Scholar
  62. 62.
    Sun J, Zhou Z (2018) A novel ocular delivery of brinzolamide based on gellan gum: in vitro and in vivo evaluation. Drug Des Devel Ther 12:383–389PubMedPubMedCentralGoogle Scholar
  63. 63.
    McWilliams DF, Walsh DA, Wilson D et al (2010) Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology (Oxford) 49(10):1852–1861Google Scholar
  64. 64.
    Miyoshi E, Takaya T, Nishinari K (1996) Rheological and thermal studies of gel-sol transition in gellan gum aqueous solutions. Carbohydr Polym 30(2–3):109–119Google Scholar
  65. 65.
    Jen AC, Wake MC, Mikos AG (1996) Review: hydrogels for cell immobilization. Biotechnol Bioeng 50(4):357–364PubMedGoogle Scholar
  66. 66.
    Ruoslahti E (1989) Proteoglycans in cell regulation. J Biol Chem 264(23):13369–13372PubMedGoogle Scholar
  67. 67.
    Douglas TEL et al (2017) Composites of gellan gum hydrogel enzymatically mineralized with calcium–zinc phosphate for bone regeneration with antibacterial activity. J Tissue Eng Regen Med 11(5):1610–1618PubMedGoogle Scholar
  68. 68.
    Douglas TEL et al (2014) Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses. Biomed Mater 9(4):045014Google Scholar
  69. 69.
    Kang SC, Kim HJ, Kim MH (2013) Effects of Astragalus membranaceus with supplemental calcium on bone mineral density and bone metabolism in calcium-deficient Ovariectomized rats. Biol Trace Elem Res 151(1):68–74PubMedGoogle Scholar
  70. 70.
    Rasch LA, De van der Schueren MAE, Van Tuyl LHD et al (2017) Content validity of a short calcium intake list to estimate daily dietary calcium intake of patients with osteoporosis. Calcif Tissue Int 100(3):271–277PubMedPubMedCentralGoogle Scholar
  71. 71.
    Adluri RS, Zhan L, Bagchi M et al (2010) Comparative effects of a novel plant-based calcium supplement with two common calcium salts on proliferation and mineralization in human osteoblast cells. Mol Cell Biochem 340(1–2):73–80PubMedGoogle Scholar
  72. 72.
    Yoo HS, Chung KH, Lee KJ et al (2017) Melanin extract from Gallus gallus domesticus promotes proliferation and differentiation of osteoblastic MG-63 cells via bone morphogenetic protein-2 signaling. Nutr Res Pract 11(3):190–197PubMedPubMedCentralGoogle Scholar
  73. 73.
    Yoo HS, Kim GJ, Song DH et al (2017) Calcium supplement derived from Gallus gallus domesticus promotes BMP-2/RUNX2/SMAD5 and suppresses TRAP/RANK expression through MAPK signaling activation. Nutrients 9(5):504PubMedCentralGoogle Scholar
  74. 74.
    Liu W et al (2013) Isolation and identification of antioxidative peptides from pilot-scale black-bone silky fowl (Gallus gallus domesticus Brisson) muscle oligopeptides. J Sci Food Agric 93(11):2782–2788PubMedGoogle Scholar
  75. 75.
    Han KS, Song JE, Kang SJ et al (2015) Effect of demineralized bone particle/poly(lactic-co-glycolic acid) scaffolds on the attachment and proliferation of mesenchymal stem cells. J Biomater Sci Polym Ed 26(2):92–110PubMedGoogle Scholar
  76. 76.
    Jo H, Hong M, Shim JB et al (2015) The role of demineralized bone particle in a PLGA scaffold designed to create a media equivalent for a tissue engineered blood vessel. Macromol Res 23(11):986–993Google Scholar
  77. 77.
    Kim SH, Song JE, Lee D et al (2012) Demineralized bone particle impregnated poly(l-Lactide-co-Glycolide) scaffold for application in tissue-engineered intervertebral discs. J Biomater Sci Polym Ed 23(17):2153–2170PubMedGoogle Scholar
  78. 78.
    Song JE, Kim EY, Ahn WY et al (2015) The potential of DBP gels containing intervertebral disc cells for annulus fibrosus supplementation:in vivo. J Tissue Eng Regen Med 9(11):E98–E107PubMedGoogle Scholar
  79. 79.
    Khan SN, Cammisa FP Jr, Sandhu HS et al (2005) The biology of bone grafting. J Am Acad Orthop Surg 13(1):77–86PubMedGoogle Scholar
  80. 80.
    Gong Y, Wang C, Lai RC et al (2009) An improved injectable polysaccharide hydrogel: modified gellan gum for long-term cartilage regeneration in vitro. J Mater Chem 19(14):1968–1977Google Scholar
  81. 81.
    Smith AM, Shelton RM, Perrie Y et al (2007) An initial evaluation of gellan gum as a material for tissue engineering applications. J Biomater Appl 22(3):241–254PubMedGoogle Scholar
  82. 82.
    Pereira DR et al (2018) Injectable gellan-gum/hydroxyapatite-based bilayered hydrogel composites for osteochondral tissue regeneration. Appl Mater Today 12:309–321Google Scholar
  83. 83.
    Kim D, Thangavelu M, Song C et al (2019) Effect of different concentration of demineralized bone powder with gellan gum porous scaffold for the application of bone tissue regeneration. Int J Biol Macromol 134:749–758PubMedGoogle Scholar
  84. 84.
    Teti A (1992) Regulation of cellular functions by extracellular matrix. J Am Soc Nephrol 2(10 Suppl):S83PubMedGoogle Scholar
  85. 85.
    Masuda H, Ishihara S, Harada I et al (2014) Coating extracellular matrix proteins on a (3-aminopropyl)triethoxysilane-treated glass substrate for improved cell culture. BioTechniques 56(4):172–179PubMedGoogle Scholar
  86. 86.
    Relucenti M, Heyn R, Petruzziello L et al (2010) Detecting microcalcifications in atherosclerotic plaques by a simple trichromic staining method for epoxy embedded carotid endarterectomies. Eur J Histochem 54(3):e33–e33PubMedPubMedCentralGoogle Scholar
  87. 87.
    Sieren JC et al (2010) An automated segmentation approach for highlighting the histological complexity of human lung cancer. Ann Biomed Eng 38(12):3581–3591PubMedPubMedCentralGoogle Scholar
  88. 88.
    McMenamin PG, Djano J, Wealthall R et al (2002) Characterization of the macrophages associated with the tunica Vasculosa Lentis of the rat eye. Invest Ophthalmol Vis Sci 43(7):2076–2082PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Muthukumar Thangavelu
    • 1
  • David Kim
    • 1
  • Young Woon Jeong
    • 1
  • Wonchan Lee
    • 1
  • Jun Jae Jung
    • 1
  • Jeong Eun Song
    • 1
  • Rui L. Reis
    • 2
  • Gilson Khang
    • 1
    Email author
  1. 1.Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research CenterJeonbuk National UniversityJeonjuSouth Korea
  2. 2.3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoGuimarãesPortugal

Personalised recommendations