Skip to main content

Injectable In Situ-Forming Hydrogels for Protein and Peptide Delivery

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1250))

Abstract

Injectable in situ-forming hydrogels have been used clinically in diverse biomedical applications. These hydrogels have distinct advantages such as easy management and minimal invasiveness. The hydrogels are aqueous formulations, and a simple injection at the target site replaces a traditional surgical procedure. Here, we review injectable in situ-forming hydrogels that are formulated by physical and chemical methods to deliver proteins and peptides. Prospects for using in situ-forming hydrogels for several specific applications are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abedi-Koupai J, Sohrab F, Swarbrick G (2008) Evaluation of hydrogel application on soil water retention characteristics. J Plant Nutr 31(2):317–331

    CAS  Google Scholar 

  2. Narjary B, Aggarwal P, Singh A et al (2012) Water availability in different soils in relation to hydrogel application. Geoderma 187–188:94–101

    Google Scholar 

  3. Seo JY, Lee B, Kang TW et al (2018) Electrostatically interactive injectable hydrogels for drug delivery. Tissue Eng Regen Med 15(5):513–520

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Park JH, Park SH, Lee HY et al (2018) An injectable, electrostatically interacting drug depot for the treatment of rheumatoid arthritis. Biomaterials 154:86–98

    CAS  PubMed  Google Scholar 

  5. Chan BQY, Low ZW, Heng SJ et al (2016) Recent advances in shape memory soft materials for biomedical applications. ACS Appl Mater Interfaces 8:10070–10087

    CAS  PubMed  Google Scholar 

  6. Cho KH, Uthaman S, Park IK et al (2018) Injectable biomaterials in plastic and reconstructive surgery: a review of the current status. Tissue Eng Regen Med 15(5):559–574

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bencherif SA, Sands RW, Bhattaa D et al (2012) Injectable preformed scaffolds with shape-memory properties. PNAS 109(48):19590–19595

    CAS  PubMed  Google Scholar 

  8. Kim DY, Kwon DY, Kwon JS et al (2015) Injectable in situ-forming hydrogels for regenerative medicines. Polym Rev 55:407–445

    CAS  Google Scholar 

  9. Jang JY, Park SH, Park JH et al (2016) In vivo osteogenic differentiation of human dental pulp stem cells embedded in an injectable in vivo-forming hydrogel. Macromol Biosci 16(8):1158–1169

    CAS  PubMed  Google Scholar 

  10. Cui H, Zhuang X, He C et al (2015) High performance and reversible ionic polypeptide hydrogel based on charge-driven assembly for biomedical applications. Acta Biomater 11:183–190

    CAS  PubMed  Google Scholar 

  11. Cui J, del Campo A (2012) Multivalent H-bonds for self-healing hydrogels. Chem Commun (Camb) 48(74):9302–9304

    CAS  Google Scholar 

  12. Gopinathan J, Noh I (2018) Click chemistry-based injectable hydrogels and bioprinting inks for tissue engineering applications. Tissue Eng Reg Med 15(5):531–546

    CAS  Google Scholar 

  13. Zhao L, Li X, Zhao J et al (2016) A novel smart injectable hydrogel prepared by microbial transglutaminase and human-like collagen: its characterization and biocompatibility. Mater Sci Eng C Mater Biol Appl 68:317–326

    CAS  PubMed  Google Scholar 

  14. Gupta S, Jain A, Chakraborty M et al (2013) Oral delivery of therapeutic proteins and peptides: a review on recent developments. Drug Deliv 20(6):237–246

    CAS  PubMed  Google Scholar 

  15. Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59(6):478–490

    CAS  PubMed  Google Scholar 

  16. Sontyana AG, Mathew AP, Cho KH et al (2018) Biopolymeric in-situ hydrogels for tissue engineering and bio-imaging applications. Tissue Eng Regen Med 15(5):575–590

    PubMed  PubMed Central  Google Scholar 

  17. Sood A, Panchagnula R (2001) Peroral route: an opportunity for protein and peptide drug delivery. Chem Rev 101(11):3275–3303

    CAS  PubMed  Google Scholar 

  18. Koshy ST, Zhang DKY, Grolman JM et al (2018) Injectable nanocomposite cryogels for versatile protein drug delivery. Acta Biomater 65:36–43

    CAS  PubMed  Google Scholar 

  19. Park MR, Seo BB, Song SC (2013) Dual ionic interaction system based on polyelectrolyte complex and ionic, injectable, and thermosensitive hydrogel for sustained release of human growth hormone. Biomaterials 34(4):1327–1336

    CAS  PubMed  Google Scholar 

  20. Payyappilly S, Dhara S, Chattopadhyay S (2014) Thermoresponsive biodegradable PEG-PCL-PEG based injectable hydrogel for pulsatile insulin delivery. J Biomed Mater Res A 102(5):1500–1509

    PubMed  Google Scholar 

  21. Huynh DP, Nguyen MK, Lee DS (2010) Controlling the degradation of pH/temperature-sensitive injectable hydrogels based on poly(β-amino ester). Macromol Res 18(2):192–199

    CAS  Google Scholar 

  22. Park JH, Lee BK, Park SH et al (2017) Preparation of biodegradable and elastic poly(ε-caprolactone-co-lactide) copolymers and evaluation as a localized and sustained drug delivery carrier. Int J Mol Sci 18(3):671

    PubMed Central  Google Scholar 

  23. Hyun H, Park SH, Kwon DY et al (2014) Thermo-responsive injectable MPEG-polyester diblock copolymers for sustained drug release. Polymers 6(10):2670–2683

    Google Scholar 

  24. Lee BK, Park JH, Park SH et al (2017) Preparation of pendant group-functionalized diblock copolymers with adjustable thermogelling behavior. Polymers 9(6):239

    PubMed Central  Google Scholar 

  25. Caykara T, Kiper S, Demirel G (2006) Thermosensitive poly(N-isopropylacrylamide-co-acrylamide) hydrogels: synthesis, swelling and interaction with ionic surfactants. Eur Polym J 42(2):348–355

    CAS  Google Scholar 

  26. Ni X, Cheng A, Li J (2009) Supramolecular hydrogels based on self-assembly between PEO-PPO-PEO triblock copolymers and alpha-cyclodextrin. J Biomed Mater Res A 88(4):1031–1036

    PubMed  Google Scholar 

  27. Zhang J, Peppas N (2000) Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(n-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules 33:102–107

    CAS  Google Scholar 

  28. Kim JI, Kim DY, Kwon DY et al (2012) An injectable biodegradable temperature-responsive gel with an adjustable persistence window. Biomaterials 33(10):2823–2834

    CAS  PubMed  Google Scholar 

  29. Lee HY, Park JH, Ji YB et al (2018) Preparation of pendant group-functionalized amphiphilic diblock copolymers in the presence of a monomer activator and evaluation as temperature-responsive hydrogels. Polymer 137:293–302

    CAS  Google Scholar 

  30. Bidarra SJ, Barrias CC, Granja PL (2014) Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 10(4):1646–1662

    CAS  PubMed  Google Scholar 

  31. Lu S, Gao C, Xu X et al (2015) Injectable and self-healing carbohydrate-based hydrogel for cell encapsulation. ACS Appl Mater Interfaces 7(23):13029–13037

    CAS  PubMed  Google Scholar 

  32. Tan H, Rubin JP, Marra KG (2010) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for adipose tissue regeneration. Organogenesis 6(3):173–180

    PubMed  PubMed Central  Google Scholar 

  33. Zhang L, Ma Y, Pan X et al (2018) A composite hydrogel of chitosan/heparin/poly (gamma-glutamic acid) loaded with superoxide dismutase for wound healing. Carbohydr Polym 180:168–174

    CAS  PubMed  Google Scholar 

  34. Park SH, Kim DY, Panta P et al (2017) An intratumoral injectable, electrostatic, cross-linkable curcumin depot and synergistic enhancement of anticancer activity. NPG Asia Mater 9:e397

    CAS  Google Scholar 

  35. Chen F, Ni Y, Liu B et al (2017) Self-crosslinking and injectable hyaluronic acid/RGD-functionalized pectin hydrogel for cartilage tissue engineering. Carbohydr Polym 166:31–44

    CAS  PubMed  Google Scholar 

  36. Yucel Falco C, Falkman P, Risbo J et al (2017) Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics. Carbohydr Polym 172:175–183

    CAS  PubMed  Google Scholar 

  37. Liu Z, Yao P (2015) Injectable thermo-responsive hydrogel composed of xanthan gum and methylcellulose double networks with shear-thinning property. Carbohydr Polym 132:490–498

    CAS  PubMed  Google Scholar 

  38. Gulyuz U, Okay O (2014) Self-healing poly(acrylic acid) hydrogels with shape memory behavior of high mechanical strength. Macromolecules 47:6889–6899

    CAS  Google Scholar 

  39. Moreno E, Schwartz J, Larraneta E et al (2014) Thermosensitive hydrogels of poly(methyl vinyl ether-co-maleic anhydride) - Pluronic((R)) F127 copolymers for controlled protein release. Int J Pharm 459(1–2):1–9

    CAS  PubMed  Google Scholar 

  40. Li Y, Liu C, Tan Y et al (2014) In situ hydrogel constructed by starch-based nanoparticles via a Schiff base reaction. Carbohydr Polym 110:87–94

    CAS  PubMed  Google Scholar 

  41. Lawrence PG, Lapitsky Y (2015) Ionically cross-linked poly(allylamine) as a stimulus-responsive underwater adhesive: ionic strength and pH effects. Langmuir 31(4):1564–1574

    CAS  PubMed  Google Scholar 

  42. Alatorre-Meda M, Taboada P, Krajewska B et al (2010) DNA-poly(diallyldimethylammonium chloride) complexation and transfection efficiency. J Phys Chem B 114(29):9356–9366

    CAS  PubMed  Google Scholar 

  43. Soto AM, Koivisto JT, Parraga JE et al (2016) Optical projection tomography technique for image texture and mass transport studies in hydrogels based on gellan gum. Langmuir 32(20):5173–5182

    CAS  PubMed  Google Scholar 

  44. Lopez-Cebral R, Paolicelli P, Romero-Caamano V et al (2013) Spermidine-cross-linked hydrogels as novel potential platforms for pharmaceutical applications. J Pharm Sci 102(8):2632–2643

    CAS  PubMed  Google Scholar 

  45. Han SC, He WD, Li J et al (2009) Reducible polyethylenimine hydrogels with disulfide crosslinkers prepared by michael addition chemistry as drug delivery carriers: synthesis, properties, and in vitro release. J Polym Sci A Polym Chem 47(16):4074–4082

    CAS  Google Scholar 

  46. Lee HY, Park SH, Kim JH et al (2017) Temperature-responsive hydrogels via electrostatic interaction of amphiphilic diblock copolymers with pendant-ion groups. Polym Chem 8(43):6606–6616

    CAS  Google Scholar 

  47. Oupický D, Konák C, Ulbrich K (1999) DNA complexes with block and graft copolymers of N-(2-hydroxypropyl)methacrylamide and 2-(trimethylammonio)ethyl methacrylate. J Biomater Sci Polym Ed 10(5):573–590

    PubMed  Google Scholar 

  48. Brovarets OO, Yurenko YP, Hovorun DM (2015) The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation. J Biomol Struct Dyn 33(8):1624–1652

    CAS  PubMed  Google Scholar 

  49. Xiao XC, Chu LY, Chen WM et al (2005) Monodispersed thermoresponsive hydrogel microspheres with a volume phase transition driven by hydrogen bonding. Polymer 46(9):3199–3209

    CAS  Google Scholar 

  50. Kimura M, Fukumoto K, Watanabe J et al (2012) Hydrogen-bonding-driven spontaneous gelation of water-soluble phospholipid polymers in aqueous medium. J Biomater Sci Polym Ed 15(5):631–644

    Google Scholar 

  51. Zhang S, Fu W, Li Z (2014) Supramolecular hydrogels assembled from nonionic poly(ethylene glycol)-b-polypeptide diblocks containing OEGylated poly-l-glutamate. Polym Chem 5:3346–3351

    CAS  Google Scholar 

  52. Zhang YX, Chen YF, Shen XY et al (2016) Reduction- and pH-sensitive lipoic acid-modified poly( l -lysine) and polypeptide/silica hybrid hydrogels/nanogels. Polymer 86:32–41

    Google Scholar 

  53. Gao H, Wang N, Hu X et al (2013) Double hydrogen-bonding pH-sensitive hydrogels retaining high-strengths over a wide pH range. Macromol Rapid Commun 34(1):63–68

    CAS  PubMed  Google Scholar 

  54. Chirila TV, Lee HH, Oddon M et al (2014) Hydrogen-bonded supramolecular polymers as self-healing hydrogels: effect of a bulky adamantyl substituent in the ureido-pyrimidinone monomer. J Appl Polym Sci 131:39932

    Google Scholar 

  55. Yucel T, Cebe P, Kaplan DL (2009) Vortex-induced injectable silk fibroin hydrogels. Biophys J 97(7):2044–2050

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ozbas B, Kretsinger J, Rajagopal K et al (2004) Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules 37(19):7331–7337

    CAS  Google Scholar 

  57. Chen Y, Pang XH, Dong CM (2010) Dual stimuli-responsive supramolecular polypeptide-based hydrogel and reverse micellar hydrogel mediated by host-guest chemistry. Adv Funct Mater 20(4):579–586

    CAS  Google Scholar 

  58. Miyamae K, Nakahata M, Takashima Y et al (2015) Self-healing, expansion-contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host-guest interactions. Angew Chem Int Ed Engl 54(31):8984–8987

    CAS  PubMed  Google Scholar 

  59. Zhang M, Xu D, Yan X et al (2012) Self-healing supramolecular gels formed by crown ether based host-guest interactions. Angew Chem Int Ed Engl 51(28):7011–7015

    CAS  PubMed  Google Scholar 

  60. Wu Y, Guo B, Ma PX (2014) Injectable electroactive hydrogels formed via host–guest interactions. ACS Macro Lett 3(11):1145–1150

    CAS  Google Scholar 

  61. Li C, Rowland MJ, Shao Y et al (2015) Responsive double network hydrogels of interpenetrating dna and CB[8] host-guest supramolecular systems. Adv Mater 27(21):3298–3304

    CAS  PubMed  Google Scholar 

  62. Seo JY, Park SH, Kim MJ et al (2019) Injectable click-crosslinked hyaluronic acid depot to prolong therapeutic activity in articular joints affected by rheumatoid arthritis. ACS Appl Mater Interface 11(28):24984–24998

    CAS  Google Scholar 

  63. Piluso S, Hiebl B, Gorb SN et al (2018) Hyaluronic acid-based hydrogels crosslinked by copper-catalyzed azide-alkyne cycloaddition with tailorable mechanical properties. Int J Artif Organs 34(2):192–197

    Google Scholar 

  64. Pahimanolis N, Sorvari A, Luong ND et al (2014) Thermoresponsive xylan hydrogels via copper-catalyzed azide-alkyne cycloaddition. Carbohydr Polym 102:637–644

    CAS  PubMed  Google Scholar 

  65. Koshy ST, Desai RM, Joly P et al (2016) Click-crosslinked injectable gelatin hydrogels. Adv Healthc Mater 5(5):541–547

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Desai RM, Koshy ST, Hilderbrand SA et al (2015) Versatile click alginate hydrogels crosslinked via tetrazine-norbornene chemistry. Biomaterials 50:30–37

    CAS  PubMed  Google Scholar 

  67. Hermann CD, Wilson DS, Lawrence KA et al (2014) Rapidly polymerizing injectable click hydrogel therapy to delay bone growth in a murine re-synostosis model. Biomaterials 35(36):9698–9708

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Takahashi A, Suzuki Y, Suhara T et al (2013) In situ cross-linkable hydrogel of hyaluronan produced via copper-free click chemistry. Biomacromolecules 14(10):3581–3588

    CAS  PubMed  Google Scholar 

  69. Jiang H, Qin S, Dong H et al (2015) An injectable and fast-degradable poly(ethylene glycol) hydrogel fabricated via bioorthogonal strain-promoted azide-alkyne cycloaddition click chemistry. Soft Matter 11(30):6029–6036

    CAS  PubMed  Google Scholar 

  70. Wang X, Li Z, Shi T et al (2017) Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl 73:21–30

    CAS  PubMed  Google Scholar 

  71. Fan M, Ma Y, Mao J et al (2015) Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering. Acta Biomater 20:60–68

    CAS  PubMed  Google Scholar 

  72. Truong VX, Tsang KM, Simon GP et al (2015) Photodegradable gelatin-based hydrogels prepared by bioorthogonal click chemistry for cell encapsulation and release. Biomacromolecules 16(7):2246–2253

    CAS  PubMed  Google Scholar 

  73. Bai X, Lu S, Cao Z et al (2017) Dual crosslinked chondroitin sulfate injectable hydrogel formed via continuous Diels-Alder (DA) click chemistry for bone repair. Carbohydr Polym 166:123–130

    CAS  PubMed  Google Scholar 

  74. Fuhrmann T, Obermeyer J, Tator CH et al (2015) Click-crosslinked injectable hyaluronic acid hydrogel is safe and biocompatible in the intrathecal space for ultimate use in regenerative strategies of the injured spinal cord. Methods 84:60–69

    CAS  PubMed  Google Scholar 

  75. Bi B, Ma M, Lv S et al (2019) In-situ forming thermosensitive hydroxypropyl chitin-based hydrogel crosslinked by Diels-Alder reaction for three dimensional cell culture. Carbohydr Polym 212:368–377

    CAS  PubMed  Google Scholar 

  76. Abandansari HS, Ghanian MH, Varzideh F et al (2018) In situ formation of interpenetrating polymer network using sequential thermal and click crosslinking for enhanced retention of transplanted cells. Biomaterials 170:12–25

    CAS  PubMed  Google Scholar 

  77. Fan M, Ma Y, Zhang Z et al (2015) Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels-Alder chemistry for adipose tissue engineering. Mater Sci Eng C Mater Biol Appl 56:311–317

    CAS  PubMed  Google Scholar 

  78. Wang G, Cao X, Dong H et al (2018) A hyaluronic acid based injectable hydrogel formed via photo-crosslinking reaction and thermal-induced Diels-alder reaction for cartilage tissue engineering. Polymers 10(9):949

    PubMed Central  Google Scholar 

  79. Huang J, Jiang X (2018) Injectable and degradable pH-responsive hydrogels via spontaneous amino-yne click reaction. ACS Appl Mater Interfaces 10(1):361–370

    CAS  PubMed  Google Scholar 

  80. Wang J, He H, Cooper RC et al (2017) In situ-forming polyamidoamine dendrimer hydrogels with tunable properties prepared via Aza-Michael addition reaction. ACS Appl Mater Interfaces 9(12):10494–10503

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Dong Y, Saeed AO, Hassan W et al (2012) “One-step” preparation of thiol-ene clickable PEG-based thermoresponsive hyperbranched copolymer for in situ crosslinking hybrid hydrogel. Macromol Rapid Commun 33(2):120–126

    PubMed  Google Scholar 

  82. Maturavongsadit P, Luckanagul JA, Metavarayuth K et al (2016) Promotion of in vitro chondrogenesis of mesenchymal stem cells using in situ hyaluronic hydrogel functionalized with rod-like viral nanoparticles. Biomacromolecules 17(6):1930–1938

    CAS  PubMed  Google Scholar 

  83. Kim K, Park JH, Park SH et al (2016) An injectable, click-cross-linked small intestinal submucosa drug depot for the treatment of rheumatoid arthritis. Adv Healthc Mater 5(24):3105–3117

    CAS  PubMed  Google Scholar 

  84. Park SH, Seo JY, Park JY et al (2019) An injectable, click-crosslinked, cytomodulin-modified hyaluronic acid hydrogel for cartilage tissue engineering. NPG Asia Mater 11:30

    Google Scholar 

  85. Hardy JG, Lin P, Schmidt CE (2015) Biodegradable hydrogels composed of oxime crosslinked poly(ethylene glycol), hyaluronic acid and collagen: a tunable platform for soft tissue engineering. J Biomater Sci Polym Ed 26(3):143–161

    CAS  PubMed  Google Scholar 

  86. Yang X, Shi L, Guo X et al (2016) Convergent in situ assembly of injectable lipogel for enzymatically controlled and targeted delivery of hydrophilic molecules. Carbohydr Polym 154:62–69

    CAS  PubMed  Google Scholar 

  87. Truong VX, Hun ML, Li F et al (2016) In situ-forming click-crosslinked gelatin based hydrogels for 3D culture of thymic epithelial cells. Biomater Sci 4(7):1123–1131

    CAS  PubMed  Google Scholar 

  88. Jin R, Lin C, Cao A (2014) Enzyme-mediated fast injectable hydrogels based on chitosan–glycolic acid/tyrosine: preparation, characterization, and chondrocyte culture. Polym Chem 5(2):391–398

    CAS  Google Scholar 

  89. Park KM, Park KD (2018) In situ cross-linkable hydrogels as a dynamic matrix for tissue regenerative medicine. Tissue Eng Regen Med 15(5):547–557

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Jin R, Moreira Teixeira LS, Dijkstra PJ et al (2010) Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering. Tissue Eng Part A 16(8):2429–2440

    CAS  PubMed  Google Scholar 

  91. Bode F, da Silva MA, Drake AF et al (2011) Enzymatically cross-linked tilapia gelatin hydrogels: physical, chemical, and hybrid networks. Biomacromolecules 12(10):3741–3752

    CAS  PubMed  Google Scholar 

  92. Park KM, Ko KS, Joung YK et al (2011) In situ cross-linkable gelatin–poly(ethylene glycol)–tyramine hydrogel via enzyme-mediated reaction for tissue regenerative medicine. J Mater Chem 21(35):13180

    CAS  Google Scholar 

  93. Ranga A, Lutolf MP, Hilborn J et al (2016) Hyaluronic acid hydrogels formed in situ by transglutaminase-catalyzed reaction. Biomacromolecules 17(5):1553–1560

    CAS  PubMed  Google Scholar 

  94. Lee F, Chung JE, Kurisawa M (2008) An injectable enzymatically crosslinked hyaluronic acid–tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter 4:880–887

    CAS  Google Scholar 

  95. Yang Z, Xu B (2007) Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules. J Mater Chem 17(23):2385–2393

    CAS  Google Scholar 

  96. Srinivasan G, Chen J, Parisi J et al (2015) An injectable PEG-BSA-coumarin-GOx hydrogel for fluorescence turn-on glucose detection. Appl Biochem Biotechnol 177(5):1115–1126

    CAS  PubMed  Google Scholar 

  97. Mosiewicz KA, Johnsson K, Lutolf M (2010) Phosphopantetheinyl transferase-catalyzed formation of bioactive hydrogels for tissue engineering. J Am Chem Soc 132(17):5972–5974

    CAS  PubMed  Google Scholar 

  98. Ren K, He C, Cheng Y et al (2014) Injectable enzymatically crosslinked hydrogels based on a poly(l-glutamic acid) graft copolymer. Polym Chem 5(17):5069–5076

    CAS  Google Scholar 

  99. Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112(5):2853–2888

    CAS  PubMed  Google Scholar 

  100. Kim MG, Kang TW, Park JY et al (2019) An injectable cationic hydrogel electrostatically interacted with BMP2 to enhance in vivo osteogenic differentiation of human turbinate mesenchymal stem cells. Mater Sci Eng C 103:109853

    CAS  Google Scholar 

  101. Park SH, Kwon JS, Lee BS et al (2017) BMP2-modified injectable hydrogel for osteogenic differentiation of human periodontal ligament stem cells. Sci Rep 7(1):6603

    PubMed  PubMed Central  Google Scholar 

  102. Ishii S, Kaneko J, Nagasaki Y (2016) Development of a long-acting, protein-loaded, redox-active, injectable gel formed by a polyion complex for local protein therapeutics. Biomaterials 84:210–218

    CAS  PubMed  Google Scholar 

  103. Ding X, Gao J, Wang Z et al (2016) A shear-thinning hydrogel that extends in vivo bioactivity of FGF2. Biomaterials 111:80–89

    CAS  PubMed  Google Scholar 

  104. Seliktar D, Zisch AH, Lutolf MP et al (2004) MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J Biomed Mater Res A 68(4):704–716

    CAS  PubMed  Google Scholar 

  105. Yu LM, Kazazian K, Shoichet MS (2007) Peptide surface modification of methacrylamide chitosan for neural tissue engineering applications. J Biomed Mater Res A 8(1):243–255

    Google Scholar 

  106. Tam RY, Cooke MJ, Shoichet MS (2012) A covalently modified hydrogel blend of hyaluronan–methyl cellulose with peptides and growth factors influences neural stem/progenitor cell fate. J Mater Chem 22(37):19402–19411

    CAS  Google Scholar 

  107. Reis LA, Chiu LL, Wu J et al (2015) Hydrogels with integrin-binding angiopoietin-1-derived peptide, QHREDGS, for treatment of acute myocardial infarction. Circ Heart Fail 8(2):333–341

    CAS  PubMed  Google Scholar 

  108. Shu Y, Hao T, Yao F et al (2015) RoY peptide-modified chitosan-based hydrogel to improve angiogenesis and cardiac repair under hypoxia. ACS Appl Mater Interfaces 7(12):6505–6517

    CAS  PubMed  Google Scholar 

  109. Chung EJ, Chien KB, Aguado BA et al (2012) Osteogenic potential of BMP-2-releasing self-assembled membranes. Tissue Eng Part A 19(23–24):2664–2673

    Google Scholar 

  110. Seo HW, Kim DY, Kwon DY et al (2013) Injectable intratumoral hydrogel as 5-fluorouracil drug depot. Biomaterials 34(11):2748–2757

    CAS  PubMed  Google Scholar 

  111. Kim DY, Kwon DY, Kwon JS et al (2016) Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot. Biomaterials 85:232–245

    CAS  PubMed  Google Scholar 

  112. Park KM, Lee Y, Son JY et al (2012) In situ SVVYGLR peptide conjugation into injectable gelatin-poly(ethylene glycol)-tyramine hydrogel via enzyme-mediated reaction for enhancement of endothelial cell activity and neo-vascularization. Bioconjug Chem 23(10):2042–2050

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant from Creative Materials Discovery Program through the National Research Foundation (2019M3D1A1078938) and Priority Research Centers Program (2019R1A6A1A11051471) funded by the National Research Foundation of Korea (NRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Suk Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Park, S.H. et al. (2020). Injectable In Situ-Forming Hydrogels for Protein and Peptide Delivery. In: Chun, H., Reis, R., Motta, A., Khang, G. (eds) Biomimicked Biomaterials. Advances in Experimental Medicine and Biology, vol 1250. Springer, Singapore. https://doi.org/10.1007/978-981-15-3262-7_3

Download citation

Publish with us

Policies and ethics