Skip to main content

Decellularized Extracellular Matrices for Tissue Engineering and Regeneration

  • Chapter
  • First Online:
Biomimicked Biomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1250))

Abstract

Decellularized extracellular matrices (dECMs) from mammalian tissues and organs are particularly interesting as scaffolds for tissue engineering and regeneration when considering their ability to retain chemical compositions and three-dimensional (3D) microstructures that are similar to native ECMs. This review discusses the advantages and disadvantages of different decellularization methods that use various agents, such as ionic and nonionic detergents and biological enzymes. The applications of dECMs as scaffolds or hydrogels for tissue engineering of specific tissues including heart valves, blood vessels, and skin, as well as their performance in vitro and in vivo, are also discussed. In addition, whole organ regeneration (i.e., the heart, kidney, liver) using dECM scaffolds has been explored, which are able to recapitulate partial functions of native organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gálvez-Montón C, Prat-Vidal C, Roura S et al (2013) Cardiac tissue engineering and the bioartificial heart. Rev Esp Cardiol 66(5):391–399

    PubMed  Google Scholar 

  3. Kappetein AP, Feldman TE, Mack MJ et al (2011) Comparison of coronary bypass surgery with drug-eluting stenting for the treatment of left main and/or three-vessel disease: 3-year follow-up of the SYNTAX trial. Eur Heart J 32(17):2125–2134

    PubMed  Google Scholar 

  4. L’Heureux N, Dusserre N, Konig G et al (2006) Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 12(3):361–365

    PubMed  PubMed Central  Google Scholar 

  5. Mangold S, Schrammel S, Huber G et al (2015) Evaluation of decellularized human umbilical vein (HUV) for vascular tissue engineering – comparison with endothelium-denuded HUV. J Tissue Eng Regen Med 9(1):13–23

    CAS  PubMed  Google Scholar 

  6. Moroni F, Mirabella T (2014) Decellularized matrices for cardiovascular tissue engineering. Am J Stem Cells 3(1):1–20

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Vorotnikova E, McIntosh D, Dewilde A et al (2010) Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo. Matrix Biol 29(8):690–700

    CAS  PubMed  Google Scholar 

  8. Lutolf MR, Weber FE, Schmoekel HG et al (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21(5):513–518

    CAS  PubMed  Google Scholar 

  9. Bloch O, Golde P, Dohmen PM et al (2011) Immune response in patients receiving a bioprosthetic heart valve: lack of response with decellularized valves. Tissue Eng Part A 17(19–20):2399–2405

    CAS  PubMed  Google Scholar 

  10. Xu CC, Chan RW, Tirunagari N (2007) A biodegradable, acellular xenogeneic scaffold for regeneration of the vocal fold lamina propria. Tissue Eng 13(3):551–566

    CAS  PubMed  Google Scholar 

  11. Mann BK, Gobin AS, Tsai AT et al (2001) Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22(22):3045–3051

    CAS  PubMed  Google Scholar 

  12. Badylak SF (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13(5):377–383

    CAS  PubMed  Google Scholar 

  13. Badylak SF (2004) Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 12(3–4):367–377

    CAS  PubMed  Google Scholar 

  14. Jarvelainen H, Sainio A, Koulu M et al (2009) Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 61(2):198–223

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liang R, Fisher M, Yang G et al (2011) Alpha1,3-galactosyltransferase knockout does not alter the properties of porcine extracellular matrix bioscaffolds. Acta Biomater 7(4):1719–1727

    CAS  PubMed  Google Scholar 

  16. Hong Y, Huber A, Takanari K et al (2011) Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold. Biomaterials 32(13):3387–3394

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee KY, Bouhadir KH, Mooney DJ (2004) Controlled degradation of hydrogels using multi-functional cross-linking molecules. Biomaterials 25(13):2461–2466

    CAS  PubMed  Google Scholar 

  18. Kloxin AM, Tibbitt MW, Anseth KS (2010) Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nat Protoc 5(12):1867–1887

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bejleri D, Davis ME (2019) Decellularized extracellular matrix materials for cardiac repair and regeneration. Adv Healthc Mater 8(5):1801217

    Google Scholar 

  20. Wolf MT, Daly KA, Brennan-Pierce EP et al (2012) A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials 33(29):7028–7038

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Badylak SF, Freytes DO, Gilbert TW (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5(1):1–13

    CAS  PubMed  Google Scholar 

  22. Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683

    CAS  PubMed  Google Scholar 

  23. Phillips M, Maor E, Rubinsky B (2010) Nonthermal irreversible electroporation for tissue decellularization. J Biomech Eng 132(9):091003

    PubMed  Google Scholar 

  24. Hashimoto Y, Funamoto S, Sasaki S et al (2010) Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials 31(14):3941–3948

    CAS  PubMed  Google Scholar 

  25. Zhou J, Fritze O, Schleicher M et al (2010) Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials 31(9):2549–2554

    CAS  PubMed  Google Scholar 

  26. Assmann A, Delfs C, Munakata H et al (2013) Acceleration of autologous in vivo recellularization of decellularized aortic conduits by fibronectin surface coating. Biomaterials 34(25):6015–6026

    CAS  PubMed  Google Scholar 

  27. Dong J, Li Y, Mo X (2013) The study of a new detergent (octyl-glucopyranoside) for decellularizing porcine pericardium as tissue engineering scaffold. J Surg Res 183(1):56–67

    CAS  PubMed  Google Scholar 

  28. Seebacher G, Grasl C, Stoiber M et al (2008) Biomechanical properties of decellularized porcine pulmonary valve conduits. Artif Organs 32(1):28–35

    PubMed  Google Scholar 

  29. Seo Y, Jung Y, Kim SH (2018) Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater 67:270–281

    CAS  PubMed  Google Scholar 

  30. Akhyari P, Aubin H, Gwanmesia P et al (2011) The quest for an optimized protocol for whole-heart decellularization: a comparison of three popular and a novel decellularization technique and their diverse effects on crucial extracellular matrix qualities. Tissue Eng Part C Methods 17(9):915–926

    CAS  PubMed  Google Scholar 

  31. Sarig U, Au-Yeung GC, Wang Y et al (2012) Thick acellular heart extracellular matrix with inherent vasculature: a potential platform for myocardial tissue regeneration. Tissue Eng Part A 18(19–20):2125–2137

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Conconi MT, Coppi PD, Liddo RD et al (2005) Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transpl Int 18(6):727–734

    CAS  PubMed  Google Scholar 

  33. Conconi MT, Coppi PD, Bellini S et al (2005) Homologous muscle acellular matrix seeded with autologous myoblasts as a tissue-engineering approach to abdominal wall-defect repair. Biomaterials 26(15):2567–2574

    CAS  PubMed  Google Scholar 

  34. Theodoridis K, Tudorache I, Calistru A et al (2015) Successful matrix guided tissue regeneration of decellularized pulmonary heart valve allografts in elderly sheep. Biomaterials 52:221–228

    CAS  PubMed  Google Scholar 

  35. Schenke-Layland K, Vasilevski O, Opitz F et al (2003) Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J Struct Biol 143(3):201–208

    CAS  PubMed  Google Scholar 

  36. Lim HG, Kim SH, Choi SY et al (2012) Anticalcification effects of decellularization, solvent, and detoxification treatment for genipin and glutaraldehyde fixation of bovine pericardium. Eur J Cardiothorac Surg 41(2):383–390

    PubMed  Google Scholar 

  37. Simona P, Kasimira MT, Seebachera G et al (2003) Early failure of the tissue engineered porcine heart valve SYNERGRAFT (TM) in pediatric patients. Eur J Cardiothorac Surg 23(6):1002–1006

    Google Scholar 

  38. Li Z, Guan J (2011) Hydrogels for cardiac tissue engineering. Polymers 3(4):740–761

    CAS  Google Scholar 

  39. Singelyn JM, DeQuach JA, Seif-Naraghi SB et al (2009) Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials 30(29):5409–5416

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Uriel S, Labay E, Francis-Sedlak M et al (2009) Extraction and assembly of tissue-derived gels for cell culture and tissue engineering. Tissue Eng Part C Methods 15(3):309–321

    CAS  PubMed  Google Scholar 

  41. Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15(5):378–386

    CAS  PubMed  Google Scholar 

  42. Morris AH, Stamer DK, Kunkemoeller B et al (2018) Decellularized materials derived from TSP2-KO mice promote enhanced neovascularization and integration in diabetic wounds. Biomaterials 169:61–71

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Morris AH, Lee H, Xing H et al (2018) Tunable hydrogels derived from genetically engineered extracellular matrix accelerate diabetic wound healing. ACS Appl Mater Interfaces 10(49):41892–41901

    CAS  PubMed  Google Scholar 

  44. Schaner PJ, Martin ND, Tulenko TN et al (2004) Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg 40(1):146–153

    PubMed  Google Scholar 

  45. Song JJ, Ott HC (2011) Organ engineering based on decellularized matrix scaffolds. Trends Mol Med 17(8):424–432

    CAS  PubMed  Google Scholar 

  46. Taylor PM, Cass AEG, Yacoub MH (2006) Extracellular matrix scaffolds for tissue engineering heart valves. Prog Pediatr Cardiol 21(2):219–225

    Google Scholar 

  47. Simsa R, Padma AM, Heher P et al (2018) Systematic in vitro comparison of decellularization protocols for blood vessels. PLoS One 13(12):e0209269

    PubMed  PubMed Central  Google Scholar 

  48. Lee PH, Tsai SH, Kuo L et al (2012) A prototype tissue engineered blood vessel using amniotic membrane as scaffold. Acta Biomater 8(9):3342–3348

    CAS  PubMed  Google Scholar 

  49. Woods T, Gratzer PF (2005) Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials 26(35):7339–7349

    CAS  PubMed  Google Scholar 

  50. Roderjan JG, de Noronha L, Stimamiglio MA et al (2019) Structural assessments in decellularized extracellular matrix of porcine semilunar heart valves: evaluation of cell niches. Xenotransplantation 26(3):e12503

    PubMed  Google Scholar 

  51. Wilczek P (2010) Heart valve bioprothesis: effect of different acellularizations methods on the biomechanical and morphological properties of porcine aortic and pulmonary valve. B Pol Acad Sci-Tech 58(2):337–342

    CAS  Google Scholar 

  52. Weymann A, Schmack B, Okada T et al (2013) Reendothelialization of human heart valve neoscaffolds using umbilical cord-derived endothelial cells. Circ J 77(1):207–216

    PubMed  Google Scholar 

  53. Collatusso C, Roderjan JG, Vieira ED et al (2011) Decellularization as an anticalcification method in stentless bovine pericardium valve prosthesis: a study in sheep. Rev Bras Cir Cardiovasc 26(3):419–426

    PubMed  Google Scholar 

  54. Rice RD, Ayubi FS, Shaub ZJ et al (2010) Comparison of Surgisis, AlloDerm, and Vicryl Woven Mesh grafts for abdominal wall defect repair in an animal model. Aesthet Plast Surg 34(3):290–296

    Google Scholar 

  55. Ott HC, Matthiesen TS, Goh SK et al (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2):213–221

    CAS  PubMed  Google Scholar 

  56. Ng SL, Narayanan K, Gao S et al (2011) Lineage restricted progenitors for the repopulation of decellularized heart. Biomaterials 32(30):7571–7580

    CAS  PubMed  Google Scholar 

  57. Taylor DA, Frazier OH, Elgalad A et al (2018) Building a total bioartificial heart: harnessing nature to overcome the current hurdles. Artif Organs 42(10):970–982

    PubMed  Google Scholar 

  58. Orlando G, Booth C, Wang Z et al (2013) Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies. Biomaterials 34(24):5915–5925

    CAS  PubMed  Google Scholar 

  59. Ross EA, Williams MJ, Hamazaki T et al (2009) Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol 20(11):2338–2347

    PubMed  PubMed Central  Google Scholar 

  60. Abolbashari M, Agcaoili SM, Lee MK et al (2016) Repopulation of porcine kidney scaffold using porcine primary renal cells. Acta Biomater 29:52–61

    CAS  PubMed  Google Scholar 

  61. Zhou P, Lessa N, Estrada DC et al (2011) Decellularized liver matrix as a carrier for the transplantation of human fetal and primary hepatocytes in mice. Liver Transpl 17(4):418–427

    PubMed  PubMed Central  Google Scholar 

  62. Bao J, Wu Q, Sun J et al (2015) Hemocompatibility improvement of perfusion-decellularized clinical-scale liver scaffold through heparin immobilization. Sci Rep 5:10756

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ge, F., Lu, Y., Li, Q., Zhang, X. (2020). Decellularized Extracellular Matrices for Tissue Engineering and Regeneration. In: Chun, H., Reis, R., Motta, A., Khang, G. (eds) Biomimicked Biomaterials. Advances in Experimental Medicine and Biology, vol 1250. Springer, Singapore. https://doi.org/10.1007/978-981-15-3262-7_2

Download citation

Publish with us

Policies and ethics