Skip to main content

Regulation of Stem Cell Functions by Micro-Patterned Structures

  • Chapter
  • First Online:
Book cover Biomimicked Biomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1250))

Abstract

Micro-patterned surfaces have been broadly used to control the morphology of stem cells for investigation of the influence of physiochemical and biological cues on stem cell functions. Different structures of micro-patterned surfaces can be prepared by photolithography through designing the photomask features. Cell spreading area, geometry, aspect ratio, and alignment can be regulated by the micro-patterned structures. Their influences on adipogenic, osteogenic, and smooth muscle differentiation of the human bone marrow-derived mesenchymal stem cells are compared and investigated in details. Variation of cell morphology can trigger rearrangement of cytoskeleton, generating cytoskeletal mechanical stimulation and consequently inducing differentiation of mesenchymal stem cells into different lineages. This chapter summarizes the latest development of regulation of mesenchymal stem cell morphology by micro-patterns and the influence on the behaviors and differentiation of the mesenchymal stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cook D, Genever P (2013) Regulation of mesenchymal stem cell differentiation. In: Hime G, Abud H (eds) Transcriptional and translational regulation of stem cells, Advances in experimental medicine and biology, vol 786. Springer, Dordrecht, pp 213–229

    Chapter  Google Scholar 

  2. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  3. Jiang YH, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  CAS  PubMed  Google Scholar 

  4. Lane SW, Williams DA, Watt FM (2014) Modulating the stem cell niche for tissue regeneration. Nat Biotechnol 32:795–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thery M (2010) Micro-patterning as a tool to decipher cell morphogenesis and functions. J Cell Sci 123:4201–4213

    Article  CAS  PubMed  Google Scholar 

  6. Versaevel M, Grevesse T, Gabriele S (2012) Spatial coordination between cell and nuclear shape within micro-patterned endothelial cells. Nat Commun 3:671–681

    Article  PubMed  CAS  Google Scholar 

  7. Downing TL, Soto J, Morez C (2013) Biophysical regulation of epigenetic state and cell reprogramming. Nat Mater 12:1154–1162

    Article  CAS  PubMed  Google Scholar 

  8. Ermis M, Antmen E, Hasirci V (2018) Micro and nanofabrication methods to control cell-substrate interactions and cell behavior: a review from the tissue engineering perspective. Bioact Mater 3:355–369

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lim JY, Donahue HJ (2007) Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Eng 13:1879–1891

    Article  CAS  PubMed  Google Scholar 

  10. Jiang XY, Bruzewicz DA, Wong AP et al (2005) Directing cell migration with asymmetric micro-patterns. Proc Natl Acad Sci U S A 102:975–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thakar RG, Cheng Q, Patel S et al (2009) Cell-shape regulation of smooth muscle cell proliferation. Biophys J 96:3423–3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thery M, Racine V, Piel M et al (2006) Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci U S A 103:19771–19776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song W, Lu H, Kawazoe N et al (2011) Adipogenic differentiation of individual mesenchymal stem cell on different geometric micro-patterns. Langmuir 27:6155–6162

    Article  CAS  PubMed  Google Scholar 

  14. Song W, Kawazoe N, Chen G (2011) Dependence of spreading and differentiation of mesenchymal stem cells on micro-patterned surface area. J Nanomater 2011:9

    Article  CAS  Google Scholar 

  15. Song W, Wang X, Lu H et al (2012) Exploring adipogenic differentiation of a single stem cell on poly(acrylic acid) and polystyrene micro-patterns. Soft Matter 8:8429–8437

    Article  CAS  Google Scholar 

  16. Wang X, Song W, Kawazoe N et al (2013) The osteogenic differentiation of mesenchymal stem cells by controlled cell-cell interaction on micro-patterned surfaces. J Biomed Mater Res A 101:3388–3395

    Article  PubMed  CAS  Google Scholar 

  17. Wang X, Song W, Kawazoe N et al (2013) Influence of cell protrusion and spreading on adipogenic differentiation of mesenchymal stem cells on micro-patterned surfaces. Soft Matter 9:4160–4166

    Article  CAS  Google Scholar 

  18. Nakamoto T, Wang X, Kawazoe NP et al (2014) Influence of micro-pattern width on differentiation of human mesenchymal stem cells to vascular smooth muscle cells. Colloid Surf B-Biointerfaces 122:316–323

    Article  CAS  Google Scholar 

  19. Wang X, Nakamoto T, Dulinska-Molak I et al (2016) Regulating the stemness of mesenchymal stem cells by tuning micro-pattern features. J Mater Chem B 4:37–45

    Article  CAS  PubMed  Google Scholar 

  20. Wang X, Hu X, Kawazoe N et al (2016) Manipulating cell nanomechanics using micro-patterns. Adv Funct Mater 26:7634–7643

    Article  CAS  Google Scholar 

  21. Wang X, Hu X, Dulińska-Molak I et al (2016) Discriminating the independent influence of cell adhesion and spreading area on stem cell fate determination using micro-patterned surfaces. Sci Rep 6:28708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang X, Hu XH, Li J et al (2016) Influence of cell size on cellular uptake of gold nanoparticles. Biomater Sci 4:970–978

    Article  CAS  PubMed  Google Scholar 

  23. Yang Y, Wang X, Huang T et al (2018) Regulation of mesenchymal stem cell functions by micro-nano hybrid patterned surfaces. J Mater Chem B 6:5424–5434

    Article  CAS  PubMed  Google Scholar 

  24. Yang Y, Wang X, Wang Y et al (2019) Influence of cell spreading area on the osteogenic commitment and phenotype maintenance of mesenchymal stem cells. Sci Rep 9:6891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yang Y, Wang X, Hu X et al (2019) Influence of cell morphology on mesenchymal stem cell transfection. ACS Appl Mater Interfaces 11:1932–1941

    Article  CAS  PubMed  Google Scholar 

  26. Denitsa D, Florian H, Matthias S (2008) Mesenchymal stem cells and their cell surface receptors. Curr Rheumatol Rev 4:155–160

    Article  Google Scholar 

  27. Majumdar MK, Keane-Moore M, Buyaner D et al (2003) Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 10:228–241

    Article  CAS  PubMed  Google Scholar 

  28. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  29. Bhadriraju K, Hansen LK (2002) Extracellular matrix- and cytoskeleton-dependent changes in cell shape and stiffness. Exp Cell Res 278:92–100

    Article  CAS  PubMed  Google Scholar 

  30. Szabo E, Feng TS, Dziak E et al (2009) Cell adhesion and spreading affect adipogenesis from embryonic stem cells: the role of calreticulin. Stem Cells 27:2092–2102

    Article  CAS  PubMed  Google Scholar 

  31. Falconnet D, Csucs G, Grandin HM et al (2006) Surface engineering approaches to micro-patternsurfaces for cell-based assays. Biomaterials 27:3044–3063

    Article  CAS  PubMed  Google Scholar 

  32. Zhang D, Sun MB, Lee JM et al (2016) Cell shape and the presentation of adhesion ligands guide smooth muscle myogenesis. J Biomed Mater Res A 104:1212–1220

    Article  CAS  PubMed  Google Scholar 

  33. Zhao Y, Zeng HS, Nam J et al (2009) Fabrication of skeletal muscle constructs by topographic activation of cell alignment. Biotechnol Bioeng 102:624–631

    Article  CAS  PubMed  Google Scholar 

  34. Wang PY, Yu HT, Tsai WB (2010) Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure. Biotechnol Bioeng 106:285–294

    Article  CAS  PubMed  Google Scholar 

  35. Hoehme S, Brulport M, Bauer A et al (2010) Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proc Natl Acad Sci U S A 107:10371–10376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu CY, Inai R, Kotaki M et al (2004) Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25:877–886

    Article  CAS  PubMed  Google Scholar 

  37. Aubin H, Nichol JW, Hutson CB et al (2010) Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials 31:6941–6951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang PY, Yu J, Lin JH et al (2011) Modulation of alignment, elongation and contraction of cardiomyocytes through a combination of nanotopography and rigidity of substrates. Acta Biomater 7:3285–3293

    Article  CAS  PubMed  Google Scholar 

  39. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    Article  CAS  PubMed  Google Scholar 

  40. Park JS, Chu JS, Tsou AD et al (2011) The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β. Biomaterials 32:3921–3930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Floren M, Bonani W, Dharmarajan A et al (2016) Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype. Acta Biomater 31:156–166

    Article  CAS  PubMed  Google Scholar 

  42. Parandakh A, Anbarlou A, Tafazzoli-Shadpour M et al (2019) Substrate topography interacts with substrate stiffness and culture time to regulate mechanical properties and smooth muscle differentiation of mesenchymal stem cells. Colloids Surf B Biointerfaces 173:194–201

    Article  CAS  PubMed  Google Scholar 

  43. Huang NF, Lee RJ, Li S (2010) Engineering of aligned skeletal muscle by micro-patterning. Am J Transl Res 2:43–55

    PubMed  PubMed Central  Google Scholar 

  44. Tay CY, Pal M, Yu HY et al (2011) Bio-inspired micro-patterned platform to steer stem cell differentiation. Small 7:1416–1421

    Article  CAS  PubMed  Google Scholar 

  45. Khetan S, Burdick JA (2010) Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31:8228–8234

    Article  CAS  PubMed  Google Scholar 

  46. Solway J, Seltzer J, Samaha FF et al (1995) Structure and expression of a smooth-muscle cell-specific gene, SM22α. J Biol Chem 270:13460–13469

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 18K19947, 18K19945 and 19H04475.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, G., Kawazoe, N. (2020). Regulation of Stem Cell Functions by Micro-Patterned Structures. In: Chun, H., Reis, R., Motta, A., Khang, G. (eds) Biomimicked Biomaterials. Advances in Experimental Medicine and Biology, vol 1250. Springer, Singapore. https://doi.org/10.1007/978-981-15-3262-7_10

Download citation

Publish with us

Policies and ethics