Skip to main content

3D Bioprinting of Tissue Models with Customized Bioinks

  • Chapter
  • First Online:
Bioinspired Biomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1249 ))

Abstract

The ordered assembly of multicellular structures mimicking native tissues has lately come into prominence for various applications of biomedicine. In this respect, three-dimensional bioprinting (3DP) of cells and other biologics through additive manufacturing techniques has brought the possibility to develop functional in vitro tissue models and perhaps creating de novo transplantable tissues or organs in time. Bioinks, which can be defined as the printable analogues of the extracellular matrix, represent the foremost component of 3DP. In this chapter, we attempt to elaborate the major classes of bioinks which are prevalently being evaluated for the 3DP of a wide range of tissue models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3DP:

Three-dimensional bioprinting

A1AT:

Alpha-1 antitrypsin

ACCs:

Articular cartilage chondrocytes

AChR:

Acetylcholine receptor

Alg:

Calcium alginate

ALI:

Air-liquid interface

ALP:

Alkaline phosphatase

APAP:

Acetaminophen

ASCs:

Adipose stem cells

BaCl2:

Barium chloride

BM-MSCs:

Bone marrow-derived mesenchymal stem cells

CaCl2:

Calcium chloride

CECs:

Corneal epithelial cells

CKCs:

Corneal keratocytes

CMA:

Collagen methacrylamide

CMPCs:

Cardiac-derived cardiomyocyte progenitor cells

CMs:

Cardiomyocytes

CYP:

Cytochrome P450

dECM:

Decellularized extracellular matrix

DLP:

Digital light processing

DVS:

Divinyl sulfone

EBB:

Extrusion-based bioprinting

EDC:

1-Ethyl-(3-3-dimethylaminopropyl) hydrochloride

ESC-LESCs:

Embryonic stem cell-derived limbal epithelial stem cells

FBs:

Fibroblasts

FDM:

Fused deposition modeling

Gel-MA:

Gelatin methacrylate

Gel-AGE:

Allylated gelatin

GRGDS:

Cell binding domain of osteopontin

HA:

Hyaluronic acid

HAGM:

Hyaluronic acid glycidyl methacrylate

HUVECs:

Human umbilical vein endothelial cells

iPSCs:

Induced pluripotent stem cells

LAB:

Laser-assisted bioprinting

LAP:

Lithium phenyl-2,4,6-trimethylbenzoylphosphinate

LBB:

Laser-based bioprinting

MBB:

Microvalve-based bioprinting

MCs:

Melanocytes

MMP:

Matrix metalloproteinase

MPCs:

Muscle progenitor cells

MRI:

Magnetic resonance imaging

MSCs:

Mesenchymal stem cells

NaHCO3:

Sodium bicarbonate

nHAp:

Nanohydroxyapatite

NSCs:

Neural stem cells

PCL:

Poly(caprolactone)

PCNs:

Primary cortical neurons

PDMS:

Poly(dimethylsiloxane)

PEGDE:

Poly(ethylene glycol) diglycidyl ether

PEGDMA:

Poly(ethylene glycol) dimethacrylate

PEGDVS:

Poly(ethylene glycol) divinyl sulfone

PHCs:

Primary hepatocytes

PMMA:

Poly(methyl methacrylate)

PU:

Poly(urethane)

RGD:

Arginylglycylaspartic acid peptide

RT:

Room temperature

s.c.:

Subcutaneous

sGAGs:

Sulfated glycosaminoglycans

TA:

Tibialis anterior

μCOP:

Micro-continuous optical printing

μCT:

X-ray micro-tomography

References

  1. Aderibigbe BA, Buyana B (2018) Alginate in wound dressings. Pharmaceutics 10(2):42

    PubMed Central  Google Scholar 

  2. AnilKumar S, Allen SC, Tasnim N, Akter T, Park S, Kumar A, Chattopadhyay M, Ito Y, Suggs LJ, Joddar B (2019) The applicability of furfuryl-gelatin as a novel bioink for tissue engineering applications. J Biomed Mater Res B Appl Biomater 107(2):314–323

    CAS  PubMed  Google Scholar 

  3. Axpe E, Oyen ML (2016) Applications of alginate-based bioinks in 3D bioprinting. Int J Mol Sci 17(12):1976

    PubMed Central  Google Scholar 

  4. Bertlein S, Brown G, Lim KS, Jungst T, Boeck T, Blunk T, Tessmar J, Hooper GJ, Woodfield TBF, Groll J (2017) Thiol–ene clickable gelatin: a platform bioink for multiple 3D biofabrication technologies. Adv Mater 29(44):1703404

    Google Scholar 

  5. Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, Lang Q, Shrike Zhang Y, Shin SR, Calzone G, Annabi N, Shupe TD, Bishop CE, Atala A, Dokmeci MR, Khademhosseini A (2016) A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 8(1):014101

    PubMed  Google Scholar 

  6. Bian S, He M, Sui J, Cai H, Sun Y, Liang J, Fan Y, Zhang X (2016) The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture. Colloids Surf B: Biointerfaces 140:392–402

    CAS  PubMed  Google Scholar 

  7. Brinkman WT, Nagapudi K, Thomas BS, Chaikof EL (2003) Photo-cross-linking of type I collagen gels in the presence of smooth muscle cells: mechanical properties, cell viability, and function. Biomacromolecules 4(4):890–895

    CAS  PubMed  Google Scholar 

  8. Chang R, Emami K, Wu H, Sun W (2010) Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication 2(4):045004

    PubMed  Google Scholar 

  9. Chawla S, Midha S, Sharma A, Ghosh S (2018) Silk-based bioinks for 3D bioprinting. Adv Healthc Mater 7(8):1701204

    Google Scholar 

  10. Chircov C, Grumezescu AM, Bejenaru LE (2018) Hyaluronic acid-based scaffolds for tissue engineering. Romanian J Morphol Embryol 59:71–76

    Google Scholar 

  11. Choi YJ, Jun YJ, Kim DY, Yi HG, Chae SH, Kang J, Lee J, Gao G, Kong JS, Jang J, Chung WK, Rhie JW, Cho DW (2019) A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss. Biomaterials 206:160–169

    CAS  PubMed  Google Scholar 

  12. Choudhury D, Tun HW, Wang T, Naing MW (2018) Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing? Trends Biotechnol 36(8):787–805

    CAS  PubMed  Google Scholar 

  13. Chun HJ, Park CH, Kwon IK, Khang G (2018) Cutting-edge enabling technologies for regenerative medicine, vol 1078. Springer, Singapore

    Google Scholar 

  14. Chun HJ, Park K, Kim C-H, Khang G (2018) Novel biomaterials for regenerative medicine, vol 1077. Springer, Singapore

    Google Scholar 

  15. Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym 92(2):1262–1279

    CAS  PubMed  Google Scholar 

  16. Daly AC, Kelly DJ (2019) Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers. Biomaterials 197:194–206

    CAS  PubMed  Google Scholar 

  17. Das S, Kim SW, Choi YJ, Lee S, Lee SH, Kong JS, Park HJ, Cho DW, Jang J (2019) Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro. Acta Biomater 95:188

    CAS  PubMed  Google Scholar 

  18. Das S, Pati F, Choi YJ, Rijal G, Shim JH, Kim SW, Ray AR, Cho DW, Ghosh S (2015) Bioprintable, cell-laden silk fibroin–gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 11:233–246

    CAS  PubMed  Google Scholar 

  19. Demirdogen B, Elçin AE, Elçin YM (2010) Neovascularization by bFGF releasing hyaluronic acid–gelatin microspheres: in vitro and in vivo studies. Growth Factors 28(6):426–436

    CAS  PubMed  Google Scholar 

  20. Drzewiecki KE, Malavade JN, Ahmed I, Lowe CJ, Shreiber DI (2017) A thermoreversible, photocrosslinkable collagen bio-ink for free-form fabrication of scaffolds for regenerative medicine. Technology 5(04):185–195

    PubMed  PubMed Central  Google Scholar 

  21. Duarte Campos DF, Blaeser A, Buellesbach K, Sen KS, Xun W, Tillmann W, Fischer H (2016) Bioprinting organotypic hydrogels with improved mesenchymal stem cell remodeling and mineralization properties for bone tissue engineering. Adv Healthc Mater 5(11):1336–1345

    CAS  PubMed  Google Scholar 

  22. Durkut S, Elçin AE, Elçin YM (2015) In vitro evaluation of encapsulated primary rat hepatocytes pre-and post-cryopreservation at −80° C and in liquid nitrogen. Artif Cells Nanomed Biotechnol 43(1):50–61

    CAS  PubMed  Google Scholar 

  23. Durkut S, Elçin YM (2017) Synthesis and characterization of thermosensitive poly (N-vinylcaprolactam)-g-collagen. Artif Cells Nanomed Biotechnol 45(8):1665–1674

    CAS  PubMed  Google Scholar 

  24. Elçin YM (1995) Encapsulation of urease enzyme in xanthan-alginate spheres. Biomaterials 16(15):1157–1161

    PubMed  Google Scholar 

  25. Elçin YM (1995) Bacillus sphaericus 2362-calcium alginate microcapsules for mosquito control. Enzym Microb Technol 17(7):587–591

    Google Scholar 

  26. Elçin YM (1995) Control of mosquito larvae by encapsulated pathogen Bacillus thuringiensis var. israelensis. J Microencapsul 12(5):515–523

    PubMed  Google Scholar 

  27. Elçin YM (2004) Stem cells and tissue engineering, In biomaterials (pp. 301–316). Springer, Boston

    Google Scholar 

  28. Elçin YM, Akbulut U (1992) Polyester film strips coated with photographic gelatin containing immobilized glucose oxidase hardened by chromium (III) sulphate. Biomaterials 13(3):156–161

    PubMed  Google Scholar 

  29. Elçin YM, Vurat MT, Elçin AE, Parmaksiz M, Seker S, Lalegul-Ulker O (2018) Printable composite bioink for periodontal tissue engineering. In: Brevini T, Fazeli A, Katusic A, Vidos A, May G (eds) In vitro 3D total cell guidance and fitness. School of Medicine University of Zagreb, Zagreb, pp 28–29

    Google Scholar 

  30. Elçin YM (2017) Organs-on-chips & 3D-bioprinting technologies for personalized medicine. Stem Cell Rev Rep 13(3):319–320

    PubMed  Google Scholar 

  31. Ercan H, Durkut S, Koc-Demir A, Elçin AE, Elçin YM (2018) Clinical applications of injectable biomaterials. In: Novel biomaterials for regenerative medicine. Springer, Singapore, pp 163–182

    Google Scholar 

  32. Exposito JY, Cluzel C, Garrone R, Lethias C (2002) Evolution of collagens. Anat Rec 268(3):302–316

    CAS  PubMed  Google Scholar 

  33. Fallacara A, Baldini E, Manfredini S, Vertuani S (2018) Hyaluronic acid in the third millennium. Polymers 10(7):701

    PubMed Central  Google Scholar 

  34. Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, Shu W (2015) Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication 7(4):044102

    PubMed  Google Scholar 

  35. Gaetani R, Doevendans PA, Metz CH, Alblas J, Messina E, Giacomello A, Sluijter JP (2012) Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33(6):1782–1790

    CAS  Google Scholar 

  36. Gallo N, Nasser H, Salvatore L, Natali ML, Campa L, Mahmoud M, Capobiancod L, Sanninoa A, Madaghiele M (2019) Hyaluronic acid for advanced therapies: promises and challenges. Eur Polym J 117:134–147

    CAS  Google Scholar 

  37. Gao G, Yonezawa T, Hubbell K, Dai G, Cui X (2015) Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J 10(10):1568–1577

    CAS  PubMed  Google Scholar 

  38. Gaudet ID, Shreiber DI (2012) Characterization of methacrylated type-I collagen as a dynamic, photoactive hydrogel. Biointerphases 7(1):25

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gu Q, Tomaskovic Crook E, Wallace GG, Crook JM (2017) 3D bioprinting human induced pluripotent stem cell constructs for in situ cell proliferation and successive multilineage differentiation. Adv Healthc Mater 6(17):1700175

    Google Scholar 

  40. Guvendiren M, Molde J, Soares RM, Kohn J (2016) Designing biomaterials for 3D printing. ACS Biomater Sci Eng 2(10):1679–1693

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hardwick RN, Viergever C, Chen AE, Nguyen DG (2017) 3D bioengineered tissues: from advancements in in vitro safety to new horizons in disease modeling. Clin Pharmacol Ther 101(4):453–457

    CAS  PubMed  Google Scholar 

  42. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35(2):217–239

    CAS  PubMed  Google Scholar 

  43. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8(3):032002

    PubMed  Google Scholar 

  44. Hsieh FY, Lin HH, Hsu SH (2015) 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71:48–57

    CAS  PubMed  Google Scholar 

  45. Hutson CB, Nichol JW, Aubin H, Bae H, Yamanlar S, Al-Haque S, Koshy ST, Khademhosseini A (2011) Synthesis and characterization of tunable poly (ethylene glycol): gelatin methacrylate composite hydrogels. Tissue Eng A 17(13–14):1713–1723

    CAS  Google Scholar 

  46. Ibsirlioglu T, Elçin AE, Elçin YM (2019) Decellularized biological scaffold and stem cells from autologous human adipose tissue for cartilage tissue engineering. Methods S1046-2023(18):30435-3

    Google Scholar 

  47. Inanc B, Elçin AE, Elçin YM (2008) Human embryonic stem cell differentiation on tissue engineering scaffolds: effects of NGF and retinoic acid induction. Tissue Eng A 14(6):955–964

    CAS  Google Scholar 

  48. Irvin SA, Venkatraman SS (2016) Bioprinting and differentiation of stem cells. Molecules 21(9):1188

    Google Scholar 

  49. Isaacson A, Swioklo S, Connon CJ (2018) 3D bioprinting of a corneal stroma equivalent. Exp Eye Res 173:188–193

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jain D, Bar-Shalom D (2014) Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev Ind Pharm 40(12):1576–1584

    CAS  PubMed  Google Scholar 

  51. Jaipan P, Nguyen A, Narayan RJ (2017) Gelatin-based hydrogels for biomedical applications. MRS Commun 7(3):416–426

    CAS  Google Scholar 

  52. Jeong SM, Kim EY, Hwang JH, Lee GY, Cho SJ, Bae JY, Song JE, Yoon KH, Joo CK, Lee D, Khang G (2011) A study on proliferation and behavior of retinal pigment epithelial cells on purified alginate films. Int J Stem Cells 4(2):105

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kabirian F, Mozafari M (2019) Decellularized ECM-derived bioinks: prospects for the future. Methods S1046-2023(18):30437–30437

    Google Scholar 

  54. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312

    CAS  PubMed  Google Scholar 

  55. Kenne L, Gohil S, Nilsson EM, Karlsson A, Ericsson D, Helander Kenne A, Nord LI (2013) Modification and cross-linking parameters in hyaluronic acid hydrogels—definitions and analytical methods. Carbohydr Polym 91(1):410–418

    CAS  PubMed  Google Scholar 

  56. Keriquel V, Oliveira H, Rémy M, Ziane S, Delmond S, Rousseau B, Rey S, Catros S, Amedee J, Guillemot F, Fricain JC (2017) In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep 7(1):1778

    PubMed  PubMed Central  Google Scholar 

  57. Kim BS, Lee JS, Gao G, Cho DW (2017) Direct 3D cell-printing of human skin with functional transwell system. Biofabrication 9(2):025034

    PubMed  Google Scholar 

  58. Kim JH, Seol YJ, Ko IK, Kang HW, Lee YK, Yoo JJ, Atala A, Lee SJ (2018) 3D bioprinted human skeletal muscle constructs for muscle function restoration. Sci Rep 8(1):12307

    PubMed  PubMed Central  Google Scholar 

  59. Kiyotake EA, Douglas AW, Thomas EE, Nimmo SL, Detamore MS (2019) Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting. Acta Biomater 95:176

    CAS  PubMed  Google Scholar 

  60. Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, Zychlinski D, Schambach A, Reimers K, Vogt PM, Chichkov B (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng 109(7):1855–1863

    CAS  PubMed  Google Scholar 

  61. Kong HJ, Smith MK, Mooney DJ (2003) Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials 24(22):4023–4029

    CAS  PubMed  Google Scholar 

  62. La Gatta A, Schiraldi C, Papa A, De Rosa M (2011) Comparative analysis of commercial dermal fillers based on crosslinked hyaluronan: physical characterization and in vitro enzymatic degradation. Polym Degrad Stab 96(4):630–636

    Google Scholar 

  63. Lalegül-Ülker Ö, Elçin AE, Elçin YM (2018) Intrinsically conductive polymer nanocomposites for cellular applications. In: Cutting-edge enabling technologies for regenerative medicine. Springer, Singapore, pp 135–153

    Google Scholar 

  64. Lanza R, Langer R, Vacanti J, Atala A (2020) Principles of tissue engineering, 5th edn. Academic Press, Cambridge, MA. ISBN: 9780128184226

    Google Scholar 

  65. Laurent TC, Fraser JR (1992) Hyaluronan. FASEB J 6(7):2397–2404

    CAS  PubMed  Google Scholar 

  66. Lee H, Cho DW (2016) One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip 16(14):2618–2625

    CAS  PubMed  Google Scholar 

  67. Lee J, Lee SH, Kim BS, Cho YS, Park Y (2018) Development and evaluation of hyaluronic acid-based hybrid bio-ink for tissue regeneration. Tissue Eng Regen Med 15(6):761–769

    PubMed  PubMed Central  Google Scholar 

  68. Lee JM, Yeong WY (2016) Design and printing strategies in 3D bioprinting of cell-hydrogels: a review. Adv Healthc Mater 5(22):2856–2865

    CAS  PubMed  Google Scholar 

  69. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, Yoo SS, Dai G, Karande P (2013) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 20(6):473–484

    PubMed  PubMed Central  Google Scholar 

  71. Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K, Park JK, Yoo SS (2009) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30(8):1587–1595

    CAS  PubMed  Google Scholar 

  72. LeRoux MA, Guilak F, Setton LA (1999) Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. J Biomed Mater Res 47(1):46–53

    CAS  PubMed  Google Scholar 

  73. Liu J, He J, Liu J, Ma X, Chen Q, Lawrence N, Zhu W, Xu Y, Chen S (2019) Rapid 3D bioprinting of in vitro cardiac tissue models using human embryonic stem cell-derived cardiomyocytes. Bioprinting 13:e00040

    PubMed  PubMed Central  Google Scholar 

  74. Liu W, Zhong Z, Hu N, Zhou Y, Maggio L, Miri AK, Fragasso A, Jin X, Khademhosseini A, Zhang YS (2018) Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication 10(2):024102

    PubMed  PubMed Central  Google Scholar 

  75. Lozano R, Stevens L, Thompson BC, Gilmore KJ, Gorkin R, Stewart EM, in het Panhuis M, Romero-Ortega M, Wallace GG (2015) 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 67:264–273

    CAS  PubMed  Google Scholar 

  76. Lynn AK, Yannas IV, Bonfield W (2004) Antigenicity and immunogenicity of collagen. J Biomed Mater Res B Appl Biomater 71(2):343–354

    CAS  PubMed  Google Scholar 

  77. Ma X, Qu X, Zhu W, Li YS, Yuan S, Zhang H, Liu J, Wang P, Lai CS, Zanella F, Feng GS, Sheikh F, Chien S, Chen S (2016) Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci 113(8):2206–2211

    CAS  PubMed  Google Scholar 

  78. Maiullari F, Costantini M, Milan M, Pace V, Chirivì M, Maiullari S, Rainer A, Baci D, Marei HE, Seliktar D, Gargioli C, Bearzi C, Rizzi R (2018) A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Sci Rep 8(1):13532

    PubMed  PubMed Central  Google Scholar 

  79. Marques CF, Diogo GS, Pina S, Oliveira JM, Silva TH, Reis RL (2019) Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. J Mater Sci Mater Med 30(3):32

    CAS  PubMed  Google Scholar 

  80. Min D, Lee W, Bae IH, Lee TR, Croce P, Yoo SS (2018) Bioprinting of biomimetic skin containing melanocytes. Exp Dermatol 27(5):453–459

    CAS  PubMed  Google Scholar 

  81. Moncal KK, Ozbolat V, Datta P, Heo DN, Ozbolat IT (2019) Thermally-controlled extrusion-based bioprinting of collagen. J Mater Sci Mater Med 30(5):55

    PubMed  Google Scholar 

  82. Moroni L, Boland T, Burdick JA, De Maria C, Derby B, Forgacs G, Groll J, Li Q, Malda J, Mironov VA, Mota C, Nakamura M, Shu W, Takeuchi S, Woodfield TBF, Xu T, Yoo JJ, Vozzi G (2018) Biofabrication: a guide to technology and terminology. Trends Biotechnol 36(4):384–402

    CAS  PubMed  Google Scholar 

  83. Neumann PM, Zur B, Ehrenreich Y (1981) Gelatin-based sprayable foam as a skin substitute. J Biomed Mater Res 15(1):9–18

    CAS  PubMed  Google Scholar 

  84. Nikoo BM, Benjakul S, Ocen D, Yang N, Xu B, Zhhang L, Xu X (2013) Physical and chemical properties of gelatin from the skin of cultured Amur sturgeon (Acipenser schrenckii). J Appl Ichthyol 29(5):943–950

    CAS  Google Scholar 

  85. Ning L, Sun H, Lelong T, Guilloteau R, Zhu N, Schreyer DJ, Chen DX (2018) 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications. Biofabrication 10(3):035014

    PubMed  Google Scholar 

  86. Noh I, Kim N, Tran HN, Lee J, Lee C (2019) 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomater Res 23(1):3

    PubMed  PubMed Central  Google Scholar 

  87. Ooi HW, Mota C, Ten Cate AT, Calore A, Moroni L, Baker MB (2018) Thiol–Ene alginate hydrogels as versatile bioinks for bioprinting. Biomacromolecules 19(8):3390–3400

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Osidak EO, Karalkin PA, Osidak MS, Parfenov VA, Sivogrivov DE, Pereira FDAS, Gryadunova AA, Koudan EV, Khesuani YD, Кasyanov VA, Belousov SI, Krasheninnikov SV, Grigoriev TE, Chvalun SN, Bulanova EA, Mironov VA, Domogatsky SP (2019) Viscoll collagen solution as a novel bioink for direct 3D bioprinting. J Mater Sci Mater Med 30(3):31

    PubMed  Google Scholar 

  89. Panwar A, Tan L (2016) Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules 21(6):685

    PubMed Central  Google Scholar 

  90. Parak A, Pradeep P, du Toit LC, Kumar P, Choonara YE, Pillay V (2019) Functionalizing bioinks for 3D bioprinting applications. Drug Discov Today 24(1):198–205

    CAS  PubMed  Google Scholar 

  91. Parmaksiz M, Dogan A, Odabas S, Elcin AE, Elcin YM (2016) Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed Mater 11(2):022003

    PubMed  Google Scholar 

  92. Pepelanova I, Kruppa K, Scheper T, Lavrentieva A (2018) Gelatin-Methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting. Bioengineering 5(3):55

    CAS  PubMed Central  Google Scholar 

  93. Poldervaart MT, Goversen B, De Ruijter M, Abbadessa A, Melchels FP, Öner FC, Dhert WJA, Vermondent AJ (2017) 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. PLoS One 12(6):e0177628

    PubMed  PubMed Central  Google Scholar 

  94. Rhee S, Puetzer JL, Mason BN, Reinhart-King CA, Bonassar LJ (2016) 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater Sci Eng 2(10):1800–1805

    CAS  Google Scholar 

  95. Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Biol 3(1):a004978

    PubMed  PubMed Central  Google Scholar 

  96. Saldin LT, Cramer MC, Velankar SC, White LJ, Badylak SF (2017) Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater 49:1–15

    CAS  PubMed  Google Scholar 

  97. Seol YJ, Lee H, Copus JS, Kang HW, Cho DW, Atala A, Lee SJ, Yoo JJ (2018) 3D bioprinted biomask for facial skin reconstruction. Bioprinting 10:e00028

    PubMed  PubMed Central  Google Scholar 

  98. Shafiee A, Atala A (2017) Tissue engineering: toward a new era of medicine. Annu Rev Med 68:29–40

    CAS  PubMed  Google Scholar 

  99. Skardal A, Murphy SV, Devarasetty M, Mead I, Kang HW, Seol YJ, Shrike Zhang Y, Shin SR, Zhao L, Aleman J, Hall AR, Shupe TD, Kleensang A, Dokmeci MR, Jin Lee S, Jackson JD, Yoo JJ, Hartung T, Khademhosseini A, Soker S, Bishop CE, Atala A (2017) Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep 7(1):8837

    PubMed  PubMed Central  Google Scholar 

  100. Smeds KA, Pfister-Serres A, Miki D, Dastgheib K, Inoue M, Hatchell DL, Grinstaff MW (2001) Photocrosslinkable polysaccharides for in situ hydrogel formation. J Biomed Mater Res 54(1):115–121

    CAS  PubMed  Google Scholar 

  101. Sorkio A, Koch L, Koivusalo L, Deiwick A, Miettinen S, Chichkov B, Skottman H (2018) Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials 171:57–71

    CAS  PubMed  Google Scholar 

  102. Stratesteffen H, Köpf M, Kreimendahl F, Blaeser A, Jockenhoevel S, Fischer H (2017) GelMA-collagen blends enable drop-on-demand 3D printability and promote angiogenesis. Biofabrication 9(4):045002

    PubMed  Google Scholar 

  103. Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H (2000) Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1(1):31–38

    Google Scholar 

  104. Venkatesan J, Bhatnagar I, Manivasagan P, Kang K-H, Kim S-K (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281

    CAS  PubMed  Google Scholar 

  105. Wang X, Ao Q, Tian X, Fan J, Tong H, Hou W, Bai S (2017) Gelatin-based hydrogels for organ 3D bioprinting. Polymers 9(9):401

    PubMed Central  Google Scholar 

  106. Wang Z, Lee SJ, Cheng HJ, Yoo JJ, Atala A (2018) 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater 70:48–56

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang Z, Tian Z, Menard F, Kim K (2017) Comparative study of gelatin methacrylate hydrogels from different sources for biofabrication applications. Biofabrication 9(4):044101

    PubMed  Google Scholar 

  108. Ward AG, Courts A (1977) The science and technology of gelatin. Academic, New York

    Google Scholar 

  109. Wu Y, Lin ZYW, Wenger AC, Tam KC, Tang XS (2018) 3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink. Bioprinting 9:1–6

    Google Scholar 

  110. Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S (2016) Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep 6:24474

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Xu W, Zhang Molino B, Cheng F, Molino PJ, Yue Z, Su D, Wang X, Willför S, Xu C, Wallace GG (2019) On low-concentration inks formulated by nanocellulose assisted with gelatin methacrylate (gelma) for 3D printing toward wound healing application. ACS Appl Mater Interfaces 11(9):8838–8848

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Yi HG, Choi YJ, Jung JW, Jang J, Song TH, Chae S, Ahn M, Choi TH, Rhie JW, Cho DW (2019) Three-dimensional printing of a patient-specific engineered nasal cartilage for augmentative rhinoplasty. J Tissue Eng 10:2041731418824797

    PubMed  PubMed Central  Google Scholar 

  113. Yue K, Santiago GT, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254–271

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was supported by grants from TUBITAK, the Scientific and Technological Research Council of Turkey (117M281 and 216S575).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vurat, M.T., Ergun, C., Elçin, A.E., Elçin, Y.M. (2020). 3D Bioprinting of Tissue Models with Customized Bioinks. In: Chun, H.J., Reis, R.L., Motta, A., Khang, G. (eds) Bioinspired Biomaterials. Advances in Experimental Medicine and Biology, vol 1249 . Springer, Singapore. https://doi.org/10.1007/978-981-15-3258-0_5

Download citation

Publish with us

Policies and ethics