Skip to main content

Application of Gellan Gum-Based Scaffold for Regenerative Medicine

  • Chapter
  • First Online:
Bioinspired Biomaterials

Abstract

Gellan gum (GG) is a linear microbial exopolysaccharide which is derived naturally by the fermentation process of Pseudomonas elodea. Application of GG in tissue engineering and regeneration medicine (TERM) is already over 10 years and has shown great potential. Although this biomaterial has many advantages such as biocompatibility, biodegradability, nontoxic in nature, and physical stability in the presence of cations, a variety of modification methods have been suggested due to some disadvantages such as mechanical properties, high gelation temperature, and lack of attachment sites. In this review, the application of GG-based scaffold for tissue engineering and approaches to improve GG properties are discussed. Furthermore, a recent trend and future perspective of GG-based scaffold are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Groll J, Boland T, Blunk T et al (2016) Biofabrication: reappraising the definition of an evolving field. Biofabrication 8(1):013001

    PubMed  Google Scholar 

  2. Dhandayuthapani B, Yoshida Y, Maekawa T et al (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:1–19

    Google Scholar 

  3. Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(4):467–479

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu GH, Hsu SH (2015) Review: polymeric-based 3D printing for tissue engineering. J Med Biol Eng 35(3):285–292

    PubMed  PubMed Central  Google Scholar 

  5. Stratton S, Shelke NB, Hoshino K et al (2016) Bioactive polymeric scaffolds for tissue engineering. Bioact Mater 1(2):93–108

    PubMed  PubMed Central  Google Scholar 

  6. O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95

    Google Scholar 

  7. Shoichet MS (2010) Polymer scaffolds for biomaterials applications. Macromolecules 42(2):581–591

    Google Scholar 

  8. Choi JH, Kim DK, Song JE et al (2018) Silk fibroin-based scaffold for bone tissue engineering. In: Chun H, Park K, Kim CH, Khang G (eds) Novel biomaterials for regenerative medicine, Advances in experimental medicine and biology, vol 1077. Springer, Singapore, pp 371–387

    Google Scholar 

  9. Drury JR, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351

    CAS  PubMed  Google Scholar 

  10. Chen G, Ushida T, Tateishi T (2002) Scaffold design for tissue engineering. Macromol Biosci 2(2):67–77

    CAS  Google Scholar 

  11. Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE (2014) Scaffold design for bone regeneration. J Nanosci Nanotechnol 14(1):15–56

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chun HJ, Kim GW, Kim CH (2008) Fabrication of porous chitosan scaffold in order to improve biocompatibility. J Phys Chem Solids 69(5–6):1573–1576

    CAS  Google Scholar 

  13. Howard D, Buttery LD, Shakesheff KM et al (2008) Tissue engineering: strategies, stem cells and scaffolds. J Anat 213(1):66–72

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Carletti E, Motta A, Migliaresi C (2011) Scaffolds for tissue engineering and 3D cell culture methods. Mol Biol 695:17–39

    CAS  Google Scholar 

  15. Seo NM, Ko JH, Park YH et al (2011) In vitro biocompatibility of PLGA-HA nano-hybrid scaffold. Tissue Eng Regen Med 8(1):16–22

    Google Scholar 

  16. Yang DH, Lee DW, Kwon YD et al (2015) Surface modification of titanium with hydroxyapatite-heparin-BMP-2 enhances the efficacy of bone formation and osseointegration in vitro and in vivo. J Tissue Eng Regen Med 9(9):1067–1077

    CAS  PubMed  Google Scholar 

  17. Kim MS, Park S, Chun HJ (2011) Thermosensitive hydrogels for tissue engineering. Tissue Eng Regen Med 8(2):117–123

    Google Scholar 

  18. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yoo JJ, Park YJ, Rhee SH et al (2012) Synthetic peptide-conjugated titanium allow for enhanced bone formation in vivo. Connect Tissue Res 53(5):359–365

    CAS  PubMed  Google Scholar 

  20. Sachlos E, Czernuszka JT, Gogolewski S (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cells Mater 30(5):29–39

    Google Scholar 

  21. Hollister SJ, Maddox RD, Taboas JM (2002) Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23(20):4095–4103

    CAS  PubMed  Google Scholar 

  22. Lam CXF, Mo XM, Teoh SH et al (2002) Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C 20(1–2):49–56

    Google Scholar 

  23. Osmałek T, Froelich A, Tasarek S (2014) In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int J Pharm 466(1–2):328–340

    PubMed  Google Scholar 

  24. Stevens LR, Gilmore KJ, Wallace GG et al (2016) Tissue engineering with gellan gum. Biomater Sci 4(9):1276–1290

    CAS  PubMed  Google Scholar 

  25. Bacelar AH, Silva-Correia J, Oliveira JM et al (2016) Recent progress in gellan gum hydrogels provided by functionalization strategies. J Mater Chem B 37(4):6164–6174

    Google Scholar 

  26. Zia KM, Tabasum S, Khan MF et al (2018) Recent trends on gellan gum blends with natural and synthetic polymers: a review. Int J Biol Macromol 109:1068–1087

    CAS  PubMed  Google Scholar 

  27. Prajapati VD, Jani GK, Zala BS et al (2013) An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydr Polym 93(2):670–678

    CAS  PubMed  Google Scholar 

  28. Oliveira JT, Martins L, Picciochi R (2010) Gellan gum: a new biomaterial for cartilage tissue engineering applications. J Biomed Mater Res Part A 93(3):852–863

    CAS  Google Scholar 

  29. Lee MW, Chen HJ, Tsao SW (2010) Preparation, characterization and biological properties of gellan gum films with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linker. Carbohydr Polym 82(3):920–926

    CAS  Google Scholar 

  30. Koivisto JT, Joki T, Parraga JE et al (2017) Bioamine-crosslinked gellan gum hydrogel for neural tissue engineering. Biomed Mater 12(2):025014

    PubMed  Google Scholar 

  31. Coutinho DF, Sant SV, Shin H et al (2010) Modified gellan gum hydrogels with tunable physical and mechanical properties. Biomaterials 31(29):7494–7502

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gong Y, Wang C, Lai RC et al (2009) An improved injectable polysaccharide hydrogel: modified gellan gum for long-term cartilage regeneration in vitro. J Mater Chem 19(14):1925–2088

    Google Scholar 

  33. Caggioni M, Spicer PT, Blair DL et al (2007) Rheology and microrheology of a microstructured fluid: the gellan gum case. J Rheol 51(5):851–865

    CAS  Google Scholar 

  34. Carvalho CR, Wrobel S, Meyer C et al (2018) Gellan gum-based mineralization of gellan gum for peripheral nerve regeneration: an in vivo study in the rat sciatic nerve repair model. Biomater Sci 6(5):1059–1075

    CAS  PubMed  Google Scholar 

  35. Lee H, Fisher S, Kallos MS et al (2011) Optimizing gelling parameters of gellan gum for fibrocartilage tissue engineering. J Biomed Mater Res B Appl Biomater 98(2):238–245

    PubMed  Google Scholar 

  36. De Silva DA, Poole-Warren LA, Martens PJ et al (2013) Mechanical characteristics of swollen gellan gum hydrogels. J Appl Polym Sci 130(5):3374

    CAS  Google Scholar 

  37. Jahromi SH, Grover LM, Paxton JZ et al (2011) Degradation of polysaccharide hydrogels seeded with bone marrow stromal cells. J Mech Behav Biomed Mater 4(7):1157–1166

    CAS  PubMed  Google Scholar 

  38. Yu I, Kaonis S, Chen R (2017) A study on degradation behavior of 3D printed gellan gum scaffolds. Procedia CIRP 65(2017):78–83

    Google Scholar 

  39. Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials (Basel) 3(3):1863–1887

    CAS  Google Scholar 

  40. Naahidi S, Jafari M, Logan M et al (2017) Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 35(5):530–544

    CAS  PubMed  Google Scholar 

  41. Wang H, Li Y, Zuo Y et al (2007) Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 28(22):3338–3348

    CAS  PubMed  Google Scholar 

  42. Kim DK, Kim JI, Hwang TI et al (2017) Bioengineered osteoinductive broussonetia kazinoki/silk fibroin composite scaffolds for bone tissue regeneration. ACS Appl Mater Interfaces 9(2):1384–1394

    CAS  PubMed  Google Scholar 

  43. Lee DH, Tripathy N, Shin JH et al (2017) Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication. Int J Biol Macromol 95:14–23

    CAS  PubMed  Google Scholar 

  44. Oliveira JT, Gardel LS, Rada T et al (2010) Injectable gellan gum hydrogels with autologous cells for the treatment of rabbit articular cartilage defects. J Orthop Res 28(9):1193–1199

    CAS  PubMed  Google Scholar 

  45. Oliveira JT, Santos TC, Martins L et al (2010) Gellan gum injectable hydrogels for cartilage tissue engineering applications: in vitro studies and preliminary in vivo evaluation. Tissue Eng Part A 16(1):343–353

    CAS  PubMed  Google Scholar 

  46. Patrick CW, Uthamanthil R, Beahm E et al (2008) Animal models for adipose tissue engineering. Tissue Eng Part B Rev 14(2):167–178

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang Y, Rudym DD, Walsh A et al (2008) In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 29(24–25):3415–3428

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Silva-Correia J, Zavan B, Vindigni V et al (2013) Biocompatibility evaluation of ionic- and photo- crosslinked methacrylated gellan gum hydrogels: in vitro and in vivo study. Adv Healthc Mater 2(4):568–575

    CAS  PubMed  Google Scholar 

  49. Shin H, Olsen BD, Khademhosseini A et al (2012) The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials 33(11):3143–3152

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Oliveira MB, Custódio CA, Gasperini L et al (2016) Recent progress in gellan gum hydrogels provided by functionalization strategies. Acta Biomater 41(1):119–132

    CAS  PubMed  Google Scholar 

  51. Ferris CJ, Stevens LR, Gilmore KJ et al (2015) Peptide modification of purified gellan gum. J Mater Chem B 3:1106–1115

    CAS  PubMed  Google Scholar 

  52. Lozano R, Stevens L, Thompson BC et al (2015) 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 67:264–273

    CAS  PubMed  Google Scholar 

  53. Silva NA, Cooke MJ, Tam RY et al (2012) The effects of peptide modified gellan gum and olfactory ensheathing glia cells on neural stem/progenitor cell fate. Biomaterials 33(27):6345–6354

    CAS  PubMed  Google Scholar 

  54. Da Silva LP, Jha AK, Correlo VM et al (2018) Gellan gum hydrogels with enzyme-sensitive biodegradation and endothelial cell biorecognition sites. Adv Healthc Mater 7(5):1700686

    Google Scholar 

  55. Gomes ED, Mendes SS, Leite-Almeida H et al (2016) Combination of a peptide-modified gellan gum hydrogel with cell therapy in a lumbar spinal cord injury animal model. Biomaterials 105:38–51

    CAS  PubMed  Google Scholar 

  56. Oliveira E, Assunção-Silva RC, Ziv-Polat O et al (2017) Influence of different ECM-like hydrogels on neurite outgrowth induced by adipose tissue-derived stem cells. Stem Cells Int 2017:6319129

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gantar A, Da Silva LP, Oliveira JM et al (2014) Nanoparticulate bioactive-glass-reinforced gellan-gum hydrogels for bone-tissue engineering. Mater Sci Eng C 43:27–36

    CAS  Google Scholar 

  58. Cerqueira MT, Da Silva LP, Santos RC et al (2014) Gellan gum-hyaluronic acid spongy-like hydrogels and cells from adipose tissue synergize promoting neoskin vascularization. ACS Appl Mater Interfaces 6(22):19668–19679

    CAS  PubMed  Google Scholar 

  59. Maia FR, Musson DS, Naot D et al (2018) Differentiation of osteoclast precursors on gellan gum-based spongy-like hydrogels for bone tissue engineering. Biomed Mater 13(3):035012

    PubMed  Google Scholar 

  60. Da Silva LP, Cerqueira MT, Sousa RA et al (2014) Engineering cell-adhesive gellan gum spongy-like hydrogels for regenerative medicine purposes. Acta Biomater 10(11):4787–4797

    PubMed  Google Scholar 

  61. Manda MG, Da Silva LP, Cerqueira MT et al (2018) Gellan gum-hydroxyapatite composite spongy-like hydrogels for bone tissue engineering. J Biomed Mater Res Part A 106(2):479–490

    CAS  Google Scholar 

  62. Srisuk P, Berti FV, Da Silva LP et al (2018) Electroactive gellan gum/polyaniline spongy-like hydrogels. ACS Biomater Sci Eng 4(5):1779–1787

    CAS  Google Scholar 

  63. Da Silva LP, Oliveira S, Pirraco RP et al (2017) Eumelanin-releasing spongy-like hydrogels for skin re-epithelialization purposes. Biomed Mater 12(2):025010

    PubMed  Google Scholar 

  64. Chang SJ, Huang YT, Yang SC et al (2012) In vitro properties of gellan gum sponge as the dental filling to maintain alveolar space. Carbohydr Polym 88(2):684–689

    CAS  Google Scholar 

  65. Cerqueira MT, Da Silva LP, Santos TC et al (2014) Human skin cell fractions fail to self-organize within a gellan gum/hyaluronic acid matrix but positively influence wound healing. Tissue Eng Part A 20(9–10):1369–1378

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim HS, Kim D, Jeong YW et al (2019) Engineering retinal pigment epithelial cells regeneration for transplantation in regenerative medicine using PEG/gellan gum hydrogels. Int J Biol Macromol 130:220–228

    CAS  PubMed  Google Scholar 

  67. Da Silva LP, Pirraco RP, Santos TC et al (2016) Neovascularization induced by the hyaluronic acid-based spongy-like hydrogels degradation products. ACS Appl Mater Interfaces 8(49):33464–33474

    CAS  PubMed  Google Scholar 

  68. Posadowska U, Parizek M, Filova E et al (2015) Injectable nanoparticle-loaded hydrogel system for local delivery of sodium alendronate. Int J Pharm 485(1–2):31–40

    CAS  PubMed  Google Scholar 

  69. Jeon HY, Shin EY, Choi JH et al (2018) Evaluation of saponin loaded gellan gum hydrogel scaffold for cartilage regeneration. Macromol Res 26(8):724–729

    CAS  Google Scholar 

  70. Duarte Pereira HM, Silva-Correia J, Yan LP et al (2013) Silk-fibroin/methacrylated gellan gum hydrogel as an novel scaffold for application in meniscus cell-based tissue engineering. Arthrosc J Arthrosc Relat Surg 29(10):e53–e55

    Google Scholar 

  71. Wen J, Kim IY, Kikuta K et al (2016) Fabrication of porous α-TCP/gellan gum scaffold for bone tissue engineering. J Nanosci Nanotechnol 16(3):3077–3083

    CAS  PubMed  Google Scholar 

  72. Song JE, Song YS, Jeon SH et al (2017) Evaluation of gelatin and gellan gum blended hydrogel for cartilage regeneration. Polymer (Korea) 41(4):619–623

    CAS  Google Scholar 

  73. Douglas TEL, Pilarz M, Lopez-Heredia M et al (2015) Composites of gellan gum hydrogel enzymatically mineralized with calcium-zinc phosphate for bone regeneration with antibacterial activity. J Tissue Eng Regen Med 11(5):1610–1618

    PubMed  Google Scholar 

  74. Wen C, Lu L, Li X (2014) An interpenetrating network biohydrogel of gelatin and gellan gum by using a combination of enzymatic and ionic crosslinking approaches. Polym Int 63(9):1643

    CAS  Google Scholar 

  75. Choi I, Kim C, Song JE et al (2017) A comprehensive study on cartilage regeneration using gellan-gum/chondroitin sulfate hybrid hydrogels. Polymer (Korea) 41(6):962–966

    CAS  Google Scholar 

  76. Douglas TEL, Schietse J, Zima A et al (2017) Novel self-gelling injectable hydrogel/alpha-tricalcium phosphate composites for bone regeneration: physiochemical and microcomputer tomographical characterization. J Biomed Mater Res A 106A(3):822–828

    Google Scholar 

  77. Lopez-Heredia MA, Łapa A, Reczyńska K et al (2018) Mineralization of gellan gum hydrogels with calcium and magnesium carbonates by alternate soaking for bone regeneration applications. J Tissue Eng Regen Med 12(8):1825–1834

    CAS  PubMed  Google Scholar 

  78. Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440

    CAS  PubMed  Google Scholar 

  79. Amini AA, Nair LS (2012) Injectable hydrogels for bone and cartilage repair. Biomed Mater 7(2):024105

    PubMed  Google Scholar 

  80. Armiento AR, Stoddart MJ, Alini M et al (2018) Biomaterials for articular cartilage tissue engineering: learning from biology. Acta Biomater 65:1–20

    CAS  PubMed  Google Scholar 

  81. Buckwalter JA (1998) Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther 28(4):192–202

    CAS  PubMed  Google Scholar 

  82. Makris EA, Gomoll AH, Malizos KN et al (2015) Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 11(1):21–34

    CAS  PubMed  Google Scholar 

  83. Iwasa J, Engebretsen L, Shima Y et al (2009) Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc 17(6):561–577

    PubMed  Google Scholar 

  84. Tang Y, Sun J, Fan H et al (2012) An improved complex gel of modified gellan gum and carboxymethyl chitosan for chondrocytes encapsulation. Carbohydr Polym 88(1):46–53

    CAS  Google Scholar 

  85. Li JJ, Kaplan DL, Zreiqat H (2014) Scaffold-based regeneration of skeletal tissues to meet clinical challenges. J Mater Chem B 42(2):7272–7306

    Google Scholar 

  86. Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11(5):18–25

    CAS  Google Scholar 

  87. Chang SJ, Kuo SM, Liu WT et al (2010) Gellan gum films for effective guided bone regeneration. J Med Biol Eng 30(2):99–103

    Google Scholar 

  88. Douglas TEL, Wlodarczyk M, Pamula E et al (2014) Enzymatic mineralization of gellan gum hydrogel for bone tissue-engineering applications and its enhancement by polydopamine. J Tissue Eng Regen Mat 8:906–918

    CAS  Google Scholar 

  89. Douglas TEL, Wlodarczyk M, Pamula E et al (2014) Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses. Biomed Mater 9(4):045014

    PubMed  Google Scholar 

  90. Iulian A, Dan L, Camelia T et al (2018) Synthetic materials for osteochodnral tissue engineering. In: Oliveira J, Pina S, Reis R, San RJ (eds) Osteochondral tissue engineering, Advances in experimental medicine and biology, vol 1058. Springer, Cham, pp 31–52

    Google Scholar 

  91. Chen G, Kawazoe N (2018) Porous scaffolds for regeneration of cartilage, bone and osteochondral tissue. In: Oliveira J, Pina S, Reis R, San Roman J (eds) Osteochondral tissue engineering, Advances in experimental medicine and biology, vol 1058. Springer, Cham, pp 171–191

    Google Scholar 

  92. Pereira DR, Canadas RF, Silva-Correia J et al (2013) Gellan gum-based hydrogel bilayered scaffolds for osteochondral tissue engineering. Key Eng Mater 587:255–260

    Google Scholar 

  93. Pereira DR, Canadas RF, Silva-Correia J et al (2018) Injectable gellan-gum/hydroxyapatite-based bilayered hydrogel composites for osteochondral tissue regeneration. Appl Mater Today 12:309–321

    Google Scholar 

  94. Hejčl A, Lesný P, Přádný M et al (2008) Biocompatible hydrogels in spinal cord injury repair. Physiol Res 57(3):S121–S132

    PubMed  Google Scholar 

  95. Tukmachev D, Forostyak S, Koci Z et al (2016) Injectable extracellular matrix hydrogels as scaffolds for spinal cord injury repair. Tissue Eng Part A 22(3–4):306–317

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gelain F, Panseri S, Antonini S et al (2011) Transplantation of nanostructured composite scaffolds results in the regeneration of chronically injured spinal cords. ACS Nano 5(1):227–236

    CAS  PubMed  Google Scholar 

  97. Muheremu A, Peng J, Ao Q (2016) Stem cell based therapies for spinal cord injury. Tissue Cell 48(4):328–333

    PubMed  Google Scholar 

  98. Coutts M, Keirstead HS (2008) Stem cells for the treatment of spinal cord injury. Exp Neurol 209(2):368–377

    CAS  PubMed  Google Scholar 

  99. Silva NA, Salgado AJ, Sousa RA et al (2010) Development and characterization of a novel hybrid tissue engineering-based scaffold for spinal cord injury repair. Tissue Eng Part A 16(1):45–54

    CAS  PubMed  Google Scholar 

  100. Tsaryk R, Silva-Correia J, Oliveira JM et al (2017) Biological performance of cell-encapsulated methacrylated gellan gum-based hydrogels for nucleus pulposus regeneration. J Tissue Eng Regen Med 11(3):637–648

    CAS  PubMed  Google Scholar 

  101. Ismail NA, Mat Amin KA, Razali MH (2018) Novel gellan gum incorporated TiO2 nanotubes film for skin tissue engineering. Mater Lett 228:116–120

    CAS  Google Scholar 

  102. Chen H, Zhang Y, Ding P et al (2018) Bone marrow-derived mesenchymal stem cells encapsulated in functionalized gellan gum/collagen hydrogel for effective vascularization. ACS Appl Bio Mater 1(5):1408–1415

    CAS  Google Scholar 

  103. Badylak SF (2007) The extracellular matrix as a biologic scaffold material. Biomaterials 28(25):3587–3593

    CAS  PubMed  Google Scholar 

  104. Mastrogiacomo M, Scaglione S, Martinetti R et al (2006) Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 27(17):3230–3237

    CAS  PubMed  Google Scholar 

  105. O’Brien FJ, Harley BA, Yannas IV et al (2005) The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26(4):433–441

    PubMed  Google Scholar 

  106. Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31(3):461–466

    CAS  PubMed  Google Scholar 

  107. O’Brien FJ, Harley BA, Waller MA et al (2007) The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol Health Care 15(1):3–17

    PubMed  Google Scholar 

  108. Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14(2):149–165

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Tseng KY, Wang HC, Chang LL et al (2018) Advances in experimental medicine and biology: intrafascicular local anesthetic injection damages peripheral nerve-induced neuropathic pain. In: Shyu BC, Tominaga M (eds) Advances in pain research: mechanisms and modulation of chronic pain, Advances in experimental medicine and biology, vol 1099. Springer, Singapore, pp 65–76

    Google Scholar 

  110. Sundelacruz S, Kaplan DL (2009) Stem cell- and scaffold-based tissue engineering approaches to ostochondral regenerative medicine. Semin Cell Dev Biol 20(6):646–655

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Gulrez SKH, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Carpi A (ed) Progress in molecular and environmental bioengineering – from analysis and modeling to technology applications. IntechOpen, London, pp 117–150. https://www.intechopen.com/books/progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications/hydrogels-methods-of-preparation-characterisation-and-applications

    Google Scholar 

  112. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: Progress and challenges. Polymer 49(8):1993–2007

    CAS  Google Scholar 

  113. Yoon SJ, Yoo Y, Nam SE et al (2018) The cocktail effect of BMP-2 and TGF-β1 loaded in visible light-cured glycol chitosan hydrogels for the enhancement of bone formation in a rat tibial defect model. Mar Drugs 16(10):351

    CAS  PubMed Central  Google Scholar 

  114. Jeon SH, Lee WT, Song JE et al (2017) Cartilage regeneration using hesperidin-containing gellan gum saffolds. Polymer (Korea) 41(4):670–674

    CAS  Google Scholar 

  115. Baek JS, Carlomagno C, Muthukumar T et al (2019) Evaluation of cartilage regeneration in gellan gum/agar blended hydrogel with improved injectability. Macromol Res 27(6):558–564

    CAS  Google Scholar 

  116. Park JH, Jeon HY, Jeon YS et al (2018) Effect of cartilage regeneration on gellan gum and silk fibroin. Polymer (Korea) 42(2):298–302

    CAS  Google Scholar 

  117. Oliveira JT, Santos TC, Martins L et al (2009) Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice. J Tissue Eng Regen Med 3(7):493–500

    CAS  PubMed  Google Scholar 

  118. Canadas RF, Marques AP, Reis RL et al (2017) Osteochondral tissue engineering and regenerative strategies. In: Regenerative strategies for the treatment of knee joint disabilities, Studies in mechanobiology, tissue engineering and biomaterials, vol 21. Springer, Cham, pp 213–233

    Google Scholar 

  119. Costa L, Silva-Correia J, Oliveira JM et al (2018) Gellan gum-based hydrogels for osteochondral repair. Adv Exp Med Biol 1058:281–304

    CAS  PubMed  Google Scholar 

  120. Vilela CA, Correia C, Da Silva MA et al (2018) In vitro and in vivo performance of methacrylated gellan gum hydrogel formulations for cartilage repair. J Biomed Mater Res Part A 106(7):1987–1996

    CAS  Google Scholar 

  121. Timothy D, Wojciech P, Jana L et al (2014) Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses. Biomed Mater 9(4):045014

    Google Scholar 

  122. Douglas TEL, Łapa A, Reczyńska K et al (2016) Novel injectable, self-gelling hydrogel-microparticle composites for bone regeneration consisting of gellan gum and calcium and magnesium carbonate microparticles. Biomed Mater 11(6):065011

    PubMed  Google Scholar 

  123. Bongjo M, van den Beucken JJ, Nejadnik MR et al (2011) Biomimetic modification of synthetic hydrogels by incorporation of adhesive peptides and calcium phosphate nanoparticles: in vitro evaluation of cell behavior. Eur Cell Mater 22:350–376

    Google Scholar 

  124. Pacelli S, Paolicelli P, Moretti G et al (2016) Gellan gum methacrylate and laponite as an innovative nanocomposite hydrogel for biomedical applications. Eur Polym J 77:114–123

    CAS  Google Scholar 

  125. Xu Z, Li Z, Jiang S et al (2016) Chemically modified gellan gum hydrogels with tunable properties for use as tissue engineering scaffolds. ACS Omega 3(6):6998–7007

    Google Scholar 

  126. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524

    CAS  PubMed  Google Scholar 

  127. Perez RA, Mestres G (2016) Role of pore size and morphology in musculo-skeletal tissue regeneration. Mater Sci Eng C Mater Biol Appl 61:922–939

    CAS  PubMed  Google Scholar 

  128. Song JE, Lee SE, Cha SR et al (2016) Inflammatory response study of gellan gum impregnated duck’s feet derived collagen sponges. Sci Polym Ed 27(15):1495–1506

    CAS  Google Scholar 

  129. Mohd Azam NAN, Amin KAM (2017) The physical and mechanical properties of gellan gum films incorporated manuka honey as wound dressing materials. IOP Conf Ser Mater Sci Eng 209:012027

    Google Scholar 

  130. Levato R, Visser J, Planell JA et al (2014) Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication 6(3):035020

    PubMed  Google Scholar 

  131. De Giglio E, Bonifacio MA, Ferreira AM et al (2018) Multi-compartment scaffold fabricated via 3D-printing as in vitro co-culture osteogenic model. Sci Rep 8(1):15130

    PubMed  PubMed Central  Google Scholar 

  132. Akkineni A, Mhlfeld T, Funk A et al (2016) Highly concentrated alginate-gellan gum composites for 3D plotting of complex tissue engineering scaffolds. Polymers 8(5):170

    PubMed Central  Google Scholar 

  133. De Silva DA, Martens PJ, Gilmore KJ et al (2014) Degradation behavior of ionic-covalent entanglement hydrogels. J Appl Polym Sci 132(1):1–10

    Google Scholar 

  134. Bartnikowski M, Bartnikowski NJ, Woodruff MA et al (2015) Protective effects of reactive functional groups on chondrocytes in photocrosslinkable hydrogel systems. Acta Biomater 27:66–76

    CAS  PubMed  Google Scholar 

  135. Karvinen J, Koivisto JT, Jönkkäri I et al (2017) The production of injectable hydrazone crosslinked gellan gum-hyaluronan-hydrogels with tunable mechanical and physical properties. J Mech Behav Biomed Mater 71:383–391

    CAS  PubMed  Google Scholar 

  136. Perugini V, Guildford AL, Silva-Correia J et al (2018) Anti-angiogenic potential of VEGF blocker dendron loaded on to gellan gum hydrogels for tissue engineering applications. J Tissue Eng Regen Med 12(2):e669–e678

    CAS  PubMed  Google Scholar 

  137. Hu D, Wu D, Huang L et al (2018) 3D bioprinting of cell-laden scaffolds for intervertebral disc regeneration. Mater Lett 223:219–222

    CAS  Google Scholar 

  138. Choi JH, Choi OK, Lee J et al (2019) Evaluation of double network hydrogel of poloxamer-heparin/gellan gum for bone marrow stem cells delivery carrier. Colloids Surf B Biointerfaces 181:879–889

    CAS  PubMed  Google Scholar 

  139. Kim WK, Choi JH, Shin ME et al (2019) Evaluation of cartilage regeneration of chondrocyte encapsulated gellan gum-based hyaluronic acid blended hydrogel. Int J Biol Macromol 141:51–59

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2017R1A2B3010270) and Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (HI15C2996).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilson Khang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choi, J.H. et al. (2020). Application of Gellan Gum-Based Scaffold for Regenerative Medicine. In: Chun, H.J., Reis, R.L., Motta, A., Khang, G. (eds) Bioinspired Biomaterials. Advances in Experimental Medicine and Biology, vol 1249 . Springer, Singapore. https://doi.org/10.1007/978-981-15-3258-0_2

Download citation

Publish with us

Policies and ethics