Skip to main content

Protein-Based Drug Delivery in Brain Tumor Therapy

  • Chapter
  • First Online:
Book cover Bioinspired Biomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1249 ))

Abstract

Despite the use of active surgeries, radiotherapy, and chemotherapy in clinical practice, brain tumors are still a difficult health problem due to their rapid development and poor prognosis. To treat brain tumors, various nanoparticles can be used to target effective physiological conditions based on continuously changing vascular characteristics and microenvironments to promote effective brain tumor-targeting drug delivery. In addition, a brain tumor-targeting drug delivery system that increases drug accumulation in the brain tumor area and reduces toxicity in the normal brain and peripheral tissues is needed. However, the blood-brain barrier ​​is a big obstacle for drug delivery to the brain. In this chapter, we provide a broad overview of brain drug delivery and current strategies over the last few years. In addition, several questions have been reconsidered, such as whether nanoparticles believed to be delivered to the brain can pass through the blood-brain barrier, whether the drug is delivered to the target site, and what brain tumor treatment is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfred H, Schinkel, Wagenaar Els, Deemter Liesbeth van, Mol Carla A. A. M, Borst Piet (1995) Absence of the mdr1a P-Glycoprotein in Mice affects tissue distribution and pharmacokinetics of Dexamethasone, Digoxin, and Cyclosporin A. J Clin Investig 96:1698–1699

    Google ScholarΒ 

  2. Arcella A, Oliva MA, Staffieri S et al (2015) In vitro and in vivo effect of human lactoferrin on glioblastoma growth. J Neurosurg 123(40):1026–1035

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  3. Ballabh P, Alex B, Maiken N (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16(1):1–13

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  4. Banks WA (2016) From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov 15(4):275

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  5. Barrett GC, Donald TE (1998) Amino acids and peptides. Cambridge University Press, Cambridge

    BookΒ  Google ScholarΒ 

  6. Becker I (1991) The multidrug-resistance gene MDR1 is expressed in human glial tumors. Acta Neuropathol 82(6):516–519

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  7. BΓ©duneau A, Saulnier P, Benoit JP (2007) Active targeting of brain tumors using nanocarriers. Biomaterials 28(33):4947–4967

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  8. Belotti D, Vergani V, Drudis T et al (1996) The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin Cancer Res 2(11):1843–1849

    CASΒ  PubMedΒ  Google ScholarΒ 

  9. Brandes AA, Rigon A, Zampieri P et al (1996) Early chemotherapy and concurrent radio-chemotherapy in high grade glioma. J Neuro-Oncol 30(3):247–255

    ArticleΒ  CASΒ  Google ScholarΒ 

  10. Bronger H, KΓΆnig J, Kopplow K et al (2005) ABCC drug efflux pumps and organic anion uptake transporters in human gliomas and the blood-tumor barrier. Cancer Res 65(24):11419–11428

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  11. Brooks PC, Richard AC, David AC (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264(5158):569–571

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  12. Byeon HJ, Lee S, Min SY et al (2016) Doxorubicin-loaded nanoparticles consisted of cationic-and mannose-modified-albumins for dual-targeting in brain tumors. J Control Release 225:301–313

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  13. Chen Q, Wang X, Wang C et al (2015) Drug-induced self-assembly of modified albumins as nano-theranostics for tumor-targeted combination therapy. ACS Nano 9(5):5223–5233

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  14. Chu C, Abbara C, NoΓ«l-Hudson MS et al (2009) Disposition of everolimus in mdr1aβˆ’/1bβˆ’ mice and after a pre-treatment of lapatinib in Swiss mice. Biochem Pharmacol 77(10):1629–1634

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  15. Dafang, Wu, Yang Jing, Pardridge William M. (1997) Drug Targeting of a Peptide Radiopharmaceutical through the Primate Blood-Brain Barrier In Vivo with a Monoclonal Antibody to the Human Insulin Receptor. J Clin Investiga 100:1804–1805

    Google ScholarΒ 

  16. David, Mathieu, and Fortin David (2007) Chemotherapy and delivery in the treatment of primary brain tumors. Curr Clin Pharmacol 2: 197–198

    Google ScholarΒ 

  17. DeAngelis LM (2001) Brain tumors. N Engl J Med 344:114–123

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  18. Demeule M, RΓ©gina A, Jodoin J et al (2002) Drug transport to the brain: key roles for the efflux pump P-glycoprotein in the blood–brain barrier. Vasc Pharmacol 38(6):339–348

    ArticleΒ  CASΒ  Google ScholarΒ 

  19. Dieu LH, Wu D, Paliva CG et al (2014) Polymersomes conjugated to 83-14 monoclonal antibodies: in vitro targeting of brain capillary endothelial cells. Eur J Pharm Biopharm 88(2):316–324

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  20. Dong XW (2018) Current strategies for brain drug delivery. Theranostics 8:1481–1493

    Google ScholarΒ 

  21. Dong H, Jin M, Liu Z et al (2016) In vitro and in vivo brain-targeting chemo-photothermal therapy using graphene oxide conjugated with transferrin for gliomas. Lasers Med Sci 31(6):1123–1131

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  22. Dorothy T. Krieger, author (1983) Brain peptides: what, where, and why?. Science 222:975–985

    Google ScholarΒ 

  23. Dube B, Pandey A, Joshi G et al (2017) Hydrophobically modified polyethylenimine-based ternary complexes for targeting brain tumor: stability, in vitro and in vivo studies. Artif Cells Nanomed Biotechnol 45(8):1685–1698

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  24. Elzoghby AO, Samy WM, Elgindy NA (2012) Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 157(2):168–182

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  25. Elzoghby AO, Helmy MW, Samy WM (2013a) Micellar delivery of flutamide via milk protein nanovehicles enhances its anti-tumor efficacy in androgen-dependent prostate cancer rat model. Pharm Res 30(10):2654–2663

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  26. Elzoghby AO, Saad NI, Helmy MW et al (2013b) Ionically-crosslinked milk protein nanoparticles as flutamide carriers for effective anticancer activity in prostate cancer-bearing rats. Eur J Pharm Biopharm 85(3):444–451

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  27. Elzoghby AO, Samy WM, Elgindy NA (2015) Swellable floating tablet based on spray-dried casein nanoparticles: near-infrared spectral characterization and floating matrix evaluation. Int J Pharm 491(1–2):113–122

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  28. Elzoghby AO, Abd-Elwakil MM, Abd-Elsalam K et al (2016a) Natural polymeric nanoparticles for brain-targeting: implications on drug and gene delivery. Curr Pharm Des 22(22):3305–3323

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  29. Elzoghby AO, Hemasa AL, Freag MS (2016b) Hybrid protein-inorganic nanoparticles: from tumor-targeted drug delivery to cancer imaging. J Control Release 243:303–322

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  30. Faith G, Davis, and McCarthy Bridget J. (2001) Current epidemiological trends and surveillance issues in brain tumors’, Expert Review of Anticancer Therapy 1:395–396

    Google ScholarΒ 

  31. Fang JH, Chiu TL, Huang WC et al (2016) Dual-targeting lactoferrin-conjugated polymerized magnetic polydiacetylene-assembled nanocarriers with self-responsive fluorescence/magnetic resonance imaging for in vivo brain tumor therapy. Adv Healthc Mater 5(6):688–695

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  32. Fattori S, Becherini F, Cianfriglia M et al (2007) Human brain tumors: multidrug-resistance p-glycoprotein expression in tumor cells and intratumoral capillary endothelial cells. Virchows Arch 451(1):81–87

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  33. Fondell A, Edwards K, Ickenstein LM et al (2010) Nuclisome: a novel concept for radionuclide therapy using targeting liposomes. Eur J Nucl Med Mol Imaging 37(1):114–123

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  34. Friedman HS, Kerby T, Calvert H (2000) Temozolomide and treatment of malignant glioma. Clin Cancer Res 6(7):2585–2597

    CASΒ  PubMedΒ  Google ScholarΒ 

  35. Gallo JM, Li S, Guo P et al (2003) The effect of p-glycoprotein on paclitaxel brain and brain tumor distribution in mice. Cancer Res 63(16):5114–5117

    CASΒ  PubMedΒ  Google ScholarΒ 

  36. Gao H (2016) Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B 6(4):268–286

    ArticleΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  37. Gao K, Jiang X (2006) Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharm 310(1–2):213–219

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  38. Gao H, Pang Z, Jiang X (2013) Targeted delivery of nano-therapeutics for major disorders of the central nervous system. Pharm Res 30(10):2485–2498

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  39. Goyal D, Shuaid S, Mann S et al (2017) Rationally designed peptides and peptidomimetics as inhibitors of amyloid-Ξ² (AΞ²) aggregation: potential therapeutics of Alzheimer’s disease. ACS Comb Sci 19(2):55–80

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  40. Grant DS, Williams TL, Zahaczewsky M et al (2003) Comparison of antiangiogenic activities using paclitaxel (taxol) and docetaxel (taxotere). Int J Cancer 104(1):121–129

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  41. Groothuis DR (2000) The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro-Oncology 2(1):45–59

    ArticleΒ  CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  42. Guerra M, BlΓ‘zquez JL, RodrΓ­guez EM (2017) Blood–brain barrier and foetal-onset hydrocephalus, with a view on potential novel treatments beyond managing CSF flow. Fluids Barriers CNS 14(1):19

    ArticleΒ  CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  43. Guo L, Ren J, Jiang X (2012) Perspectives on brain-targeting drug delivery systems. Curr Pharm Biotechnol 13(12):2310–2318

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  44. Hajek R, Vorlicek J, Slavik M (1996) Paclitaxel (Taxol): a review of its antitumor activity in clinical studies Minireview. Neoplasma 43(3):141–154

    CASΒ  PubMedΒ  Google ScholarΒ 

  45. Helgason HH, Kruijtzer CM, Huitema AD et al (2006) Phase II and pharmacological study of oral paclitaxel (Paxoral) plus ciclosporin in anthracycline-pretreated metastatic breast cancer. Br J Cancer 95(7):794–800

    ArticleΒ  CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  46. Hiroko, Ohgaki, and Kleihues Paul (2005) Epidemiology and etiology of gliomas. Acta Neuropathologica 109: 93–94

    Google ScholarΒ 

  47. Hobbs SK, Monsky WL, Rk J et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Nati Acad Sci 95(8):4607–4612

    ArticleΒ  CASΒ  Google ScholarΒ 

  48. Hu K, Shi Y, Jiang W et al (2011) Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson’s disease. Int J Pharm 4150(1–2):273–283

    ArticleΒ  CASΒ  Google ScholarΒ 

  49. Huang S, Shao K, Kuang Y et al (2013) Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis. ACS Nano 7(3):2860–2871

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  50. Huo H, Gao Y, Wang Y et al (2015) Polyion complex micelles composed of pegylated polyasparthydrazide derivatives for siRNA delivery to the brain. J Colloid Interface Sci 447:8–15

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  51. Huynh E, Zheng G (2015) Cancer nanomedicine: addressing the dark side of the enhanced permeability and retention effect. Nanomedicine 10(13):1993–1995

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  52. Huynh GH, Deen DF, Szoka FC Jr (2006) Barriers to carrier mediated drug and gene delivery to brain tumors. J Control Release 110(2):236–259

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  53. Iinuma H, Maruyama K, Okinaga K et al (2002) Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer 99(1):130–137

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  54. Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47(12):3039–3051

    CASΒ  PubMedΒ  Google ScholarΒ 

  55. Jiang L, Jiang S, Zhang M et al (2014) Albumin versus other fluids for fluid resuscitation in patients with sepsis: a meta-analysis. PLoS One 9(12):1–21

    Google ScholarΒ 

  56. Jose S, Sowmya S, Cinu TA et al (2014) Surface modified PLGA nanoparticles for brain targeting of bacoside-a. Eur J Pharm Sci 63:29–35

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  57. Joseph A (2007) Overview of the changing paradigm in cancer treatment: Oral chemotherapy. American J Health-System Pharm 64: S4-NaN

    Google ScholarΒ 

  58. Juillerat Jeanneret L (2008) The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today 13(23–24):1099–1106

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  59. Karami Z, Saghatchi Zanjani MR, Rezaee S et al (2019) Neuropharmacokinetic evaluation of lactoferrin-treated indinavir-loaded nanoemulsions: remarkable brain delivery enhancement. Drug Dev Ind Pharm 45(5):736–744

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  60. Karim R, Palazzo C, Evrard B et al (2016) Nanocarriers for the treatment of glioblastoma multiforme: current state-of-the-art. J Control Release 227:23–37

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  61. Karimi M, Bahrami S, Ravari SB et al (2016) Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv 13(11):1609–1623

    ArticleΒ  CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  62. Kemper EM, van Zandbergen AE, Cleypool C et al (2003) Increased penetration of paclitaxel into the brain by inhibition of P-Glycoprotein. Clin Cancer Res 9(7):2849–2855

    CASΒ  PubMedΒ  Google ScholarΒ 

  63. Kim S, Bell K, Mousa SA et al (2000) Regulation of angiogenesis in vivo by ligation of integrin Ξ±5Ξ²1 with the central cell-binding domain of fibronectin. Am J Pathol 156(4):1345–1362

    ArticleΒ  CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  64. Komarova YA, Kruse K, Mehta D et al (2017) Protein interactions at endothelial junctions and signaling mechanisms regulating endothelial permeability. Circ Res 120(1):179–206

    ArticleΒ  CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  65. Kuang Y, An S, Guo Y et al (2013) T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting. Int J Pharm 454(1):11–20

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  66. Kumar CC, Armstrong L, Yin Z et al (2000) Targeting integrins Ξ± v Ξ² 3 and Ξ± v Ξ² 5 for bloking tumor-induced angiogenesis. Adv Exp Med Biol 476:169–180

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  67. Kunal S, Taskar, Rudraraju Vinay, Mittapalli Rajendar K, Samala Ramakrishna, Thorsheim Helen R, Lockman Julie, Gril Brunilde, Hua Emily, Palmieri Diane, Polli Joseph W, Castellino Stephen, Rubin Stephen D, Lockman Paul R, Steeg Patricia S, and Smith Quentin R. (2012) Lapatinib Distribution in HER2 Overexpressing Experimental Brain Metastases of Breast Cancer. Pharmaceutical Res 29: 770–771

    Google ScholarΒ 

  68. Kuo YC, Chen YC (2015) Targeting delivery of etoposide to inhibit the growth of human glioblastoma multiforme using lactoferrin-and folic acid-grafted poly (lactide-co-glycolide) nanoparticles. Int J Pharma 479(1):138–149

    ArticleΒ  CASΒ  Google ScholarΒ 

  69. LΓ©cuyer MA, Saint Laurent O, Larouche S et al (2017) Dual role of ALCAM in neuroinflammation and blood–brain barrier homeostasis. Proc Nati Acad Sci U S A 114(4):E524–E533

    ArticleΒ  CASΒ  Google ScholarΒ 

  70. Lee JH, Engler JA, Collawn JF et al (2001) Receptor mediated uptake of peptides that bind the human transferrin receptor. Eur J Biochem 268(7):2004–2012

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  71. Li Y, He H, Jia X et al (2012) A dual-targeting nanocarrier based on poly (amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials 33(15):3899–3908

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  72. Li S, Amat D, Peng Z et al (2016) Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells. Nanoscale 8(37):16662–16669

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  73. Lin T, Zhao P, Jiang Y et al (2016) Blood–brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano 10(11):9999–10012

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  74. Liu Y, Lu W (2012) Recent advances in brain tumor-targeted nano-drug delivery systems. Expert Opin Drug Deliv 9(6):671–686

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  75. Liu Y, An S, Li J et al (2016) Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer’s disease mice. Biomaterials 80:33–45

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  76. Liu C, Liu XN, Wang GL et al (2017) A dual-mediated liposomal drug delivery system targeting the brain: rational construction, integrity evaluation across the blood–brain barrier, and the transporting mechanism to glioma cells. Int J Nanomedicine 12:2407

    ArticleΒ  CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  77. Lu W, Zhaog Y, Tan YZ et al (2005) Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J Control Release 107(3):428–448

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  78. Luo B, Wang S, Rao R et al (2016) Conjugation magnetic PAEEP-PLLA nanoparticles with lactoferrin as a specific targeting MRI contrast agent for detection of brain glioma in rats. Nanoscale Res Lett 11(1):227

    ArticleΒ  PubMedΒ  PubMed CentralΒ  CASΒ  Google ScholarΒ 

  79. MΓ€ger I, Meyer AH, Li J et al (2017) Targeting blood-brain-barrier transcytosis–perspectives for drug delivery. Neuropharmacology 120:4–7

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  80. Martin C, Berridge G, Higgins CF et al (2000) Communication between multiple drug binding sites on P-glycoprotein. Mol Pharm 58(3):624–632

    ArticleΒ  CASΒ  Google ScholarΒ 

  81. Martins SM, Sarmento B, Nunes C et al (2013) Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration. Eur J Pharma Biopharm 85(3):488–502

    ArticleΒ  CASΒ  Google ScholarΒ 

  82. Masanao, Mohri, Nitta Hisashi, and Yamashita Junkoh (2000) Expression of multidrug resistance-associated protein (MRP) in human gliomas. J Neuro-Oncol 49:105–106

    Google ScholarΒ 

  83. Miao D, Jiang M, Liu Z et al (2013) Co-administration of dual-targeting nanoparticles with penetration enhancement peptide for antiglioblastoma therapy. Mol Pharm 11(1):90–101

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  84. Monsky WL, Mouta Carreira C, Tsuzuki Y et al (2002) Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors. Clin Cancer Res 8(4):1008–1013

    CASΒ  PubMedΒ  Google ScholarΒ 

  85. Newton HB (1994) Primary brain tumors: review of etiology, diagnosis and treatment. Am Fam Physician 49(4):787–797

    CASΒ  PubMedΒ  Google ScholarΒ 

  86. Ningaraj NS, Rao M, Hashizume K et al (2002) Regulation of blood-brain tumor barrier permeability by calcium-activated potassium channels. J Pharm Exp Ther 301(3):838–851

    ArticleΒ  CASΒ  Google ScholarΒ 

  87. Oberoi RK, Parrish KE, Sio TT et al (2015) Strategies to improve delivery of anticancer drugs across the blood–brain barrier to treat glioblastoma. Neuro-oncol 18(1):27–36

    ArticleΒ  PubMedΒ  PubMed CentralΒ  CASΒ  Google ScholarΒ 

  88. Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170(5):1445–1453

    ArticleΒ  CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  89. Omuro AMP, Faivre S, Raymond E (2007) Lessons learned in the development of targeted therapy for malignant gliomas. Mol Cancer Ther 6(7):1909–1919

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  90. Paek IB, Ji HY, Kim MS et al (2006a) Metabolism of a new p-glycoprotein inhibitor HM-30181 in rats using liquid chromatography/electrospray mass spectrometry. Rapid Commun Mass Spectrom 20(9):1457–1462

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  91. Paek IB, Ji HY, Kim MS et al (2006b) Simultaneous determination of paclitaxel and a new p-glycoprotein inhibitor HM-30181 in rat plasma by liquid chromatography with tandem mass spectrometry. J Sep Sci 29(5):628–634

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  92. Pang Z, Lu K, Gao H et al (2008) Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. J Control Release 128(2):120–127

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  93. Pang Z, Feng L, Hua R et al (2010) Lactoferrin-conjugated biodegradable polymersome holding doxorubicin and tetrandrine for chemotherapy of glioma rats. Mol Pharm 7(6):1995–2005

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  94. Pang Z, Gao H, Guo L et al (2011a) Enhanced intracellular delivery and chemotherapy for glioma rats by transferrin-conjugated biodegradable polymersomes loaded with doxorubicin. Bioconjug Chem 22(6):1171–1180

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  95. Pang Z, Gao H, Yu Y et al (2011b) Brain delivery and cellular internalization mechanisms for transferrin conjugated biodegradable polymersomes. Int J Pharm 415(1–2):284–292

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  96. Pardridge WM (1991) Peptide drug delivery to the brain. Raven Press, New York

    Google ScholarΒ 

  97. Park TE, Singh B, Li H et al (2015) Enhanced BBB permeability of osmotically active poly (mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer’s disease. Biomaterials 38:61–71

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  98. Pasquier E, Pourroy B, Camoin L et al (2004) Antiangiogenic activity of paclitaxel is associated with its cytostatic effect, mediated by the initiation but not completion of a mitochondrial apoptotic signaling pathway. Mol Cancer Ther 3(10):1301–1310

    CASΒ  PubMedΒ  Google ScholarΒ 

  99. Pehlivan SB (2013) Nanotechnology-based drug delivery systems for targeting, imaging and diagnosis of neurodegenerative diseases. Pharm Res 30(10):2499–2511

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  100. Polli JW, Olson KL, Chism JP et al (2009) An unexpected synergist role of p-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl) oxy] phenyl}-6-[5-({[2-(methylsulfonyl) ethyl] amino} methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metab Dispos 37(2):439–442

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  101. Provenzale JM, Mukundan S, Dewhirst M (2005) The role of blood-brain barrier permeability in brain tumor imaging and therapeutics. AJR Am J Roentgenol 185(3):763–767

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  102. Qian ZM, Li H, Sun H et al (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 54(4):561–587

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  103. Re F, Cambianica I, Zona C et al (2011) Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model. Nanomedicine 7(5):551–559

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  104. Roberts WG, Delaat J, Nagane M et al (1998) Host microvasculature influence on tumor vascular morphology and endothelial gene expression. Am J Pathol 153(4):1239–1248

    ArticleΒ  CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  105. Rousselle C, Clair P, Temsamani J et al (2000) New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Mol Pharmacol 57(4):679–686

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  106. Salphati L, Lee LB, Pang J et al (2010) Role of p-glycoprotein and breast cancer resistance protein-1 in the brain penetration and brain pharmacodynamic activity of the novel phosphatidylinositol 3-kinase inhibitor GDC-0941. Drug Metab Dispos 38(9):1422–1426

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  107. Salphati L, Pang J, Plise EG et al (2012) Preclinical assessment of the absorption and disposition of the phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor GDC-0980 and prediction of its pharmacokinetics and efficacy in human. Drug Metab Dispos 40(9):1785–1796

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  108. Salzano G, Zappavigna S, Luce A et al (2016) Transferrin-targeted nanoparticles containing zoledronic acid as a potential tool to inhibit glioblastoma growth. J Biomed Nanotechnol 12(4):811–830

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  109. Sarin H, Wu H, Hall MD et al (2008) Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J Ttransl Med 6(1):80

    ArticleΒ  CASΒ  Google ScholarΒ 

  110. Sarin H, Wu H, Vo HQ et al (2009) Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors. J Transl Med 7(1):51

    ArticleΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  111. Schinkel AH, Smit JJ, te Riele HP et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77(4):491–502

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  112. Schlageter KE, Molnar P, Lapin GD et al (1999) Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res 58(3):312–328

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  113. Shai RM, Reichatdt JK, Chen TC (2008) Pharmacogenomics of brain cancer and personalized medicine in malignant gliomas. Future Oncol 4:525–534

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  114. Sobin LH (1981) The international histological classification of tumours. Bull World Health Organ 59(6):813–819

    CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  115. Song XL, Xiao Y, Cheng L et al (2017) Application of multifunctional targeting epirubicin liposomes in the treatment of non-small-cell lung cancer. Int J Nanomedicine 12:7433–7451

    ArticleΒ  CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  116. Spano JP, Fagard R, Soria JC et al (2005) Epidermal growth factor receptor signaling in colorectal cancer: preclinical data and therapeutic perspectives. Ann Oncol 16(2):189–194

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  117. Sparreboom A, Van Asperen J, Mayer U et al (1997) Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. PNAS 94(5):2031–2035

    ArticleΒ  CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  118. Stephan, Fellner, Bauer BjΓΆrn, Miller David S, Schaffrik Martina, FankhΓ€nel Martina, Spru Thilo, Bernhardt GΓΌnther, Graeff Claudia, FΓ€rber Lothar, Gschaidmeier Harald, Buschauer Armin, and Fricker Gert. 2002. β€˜Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Investig 110: 1309–1310

    Google ScholarΒ 

  119. Su Z, Xing L, Chen Y et al (2014) Lactoferrin-modified poly (ethylene glycol)-grafted BSA nanoparticles as a dual-targeting carrier for treating brain gliomas. Mol Pharm 11(6):1823–1834

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  120. Takasato Y, Rapoport SI, Smith QR (1984) An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Phys 247(3):H484–H493

    CASΒ  Google ScholarΒ 

  121. Tamaru M, Akita H, Harashima H et al (2014) Application of apolipoprotein E-modified liposomal nanoparticles as a carrier for delivering DNA and nucleic acid in the brain. Int J Nanomedicine 9:4267–4276

    PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  122. Tong H, Wang Y, Lu X et al (2015) On the preparation of transferrin modified artesunate nanoliposomes and their glioma-targeting treatment in-vitro and in-vivo. Int J Clin Exp Med 8(12):22045–22052

    CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  123. Tsutsui Y, Tomizawa K, Nagita M et al (2007) Development of bionanocapsules targeting brain tumors. J Control Release 122(2):159–164

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  124. Van Asperen J, Schinkel AH, van Tellingen O et al (1996) Altered pharmacokinetics of vinblastine in Mdr1a P-glycoprotein-deficient mice. J Nati Cancer Inst 88(14):994–999

    ArticleΒ  Google ScholarΒ 

  125. Van Asperen J, Borst P, Beijnen JH et al (1997) Enhanced oral bioavailability of paclitaxel in mice treated with the P-glycoprotein blocker SDZ PSC 833. Br J Cancer 76(9):1181–1183

    ArticleΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  126. Vlieghe P, Khrestxgatisky M (2012) Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery. Med Res Rev 33(3):457–516

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  127. Wang X, Tu M, Tian B et al (2016) Synthesis of tumor-targeted folate conjugated fluorescent magnetic albumin nanoparticles for enhanced intracellular dual-modal imaging into human brain tumor cells. Anal Biochem 512:8–17

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  128. Wei X, Chen X, Ying M et al (2014) Brain tumor-targeted drug delivery strategies. Acta Pharm Sin B 4(3):193–201

    ArticleΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  129. Wilson B, Lavanya Y, Jenita JL et al (2014) Albumin nanoparticles for the delivery of gabapentin: preparation, characterization and pharmacodynamic studies. Int J Pharm 473(1–2):73–79

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  130. Xin-Hua, Tian, Lin Xiao-Ning, Wei Feng et al (2011) Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Int J Nanomed 2011:445–452

    Google ScholarΒ 

  131. Yano S, Kondo K, Wadsworth P et al (2003) Distribution and function of EGFR in human tissue and the effect of EGFR tyrosine kinase inhibition. Anticancer Res 23(5A):3639–3650

    CASΒ  PubMedΒ  Google ScholarΒ 

  132. Zensi A, Begley D, Kreuter J et al (2010) Human serum albumin nanoparticles modified with apolipoprotein AI cross the blood-brain barrier and enter the rodent brain. J Drug Target 18(10):842–848

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  133. Zhan C, Lu W (2012) The blood-brain/tumor barriers: challenges and chances for malignant gliomas targeted drug delivery. Curr Pharma Biotechnol 13(12):2380–2387

    ArticleΒ  CASΒ  Google ScholarΒ 

  134. Zhan C, Gu B, Lu W et al (2010) Cyclic RGD conjugated poly (ethylene glycol)-co-poly (lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J Control Release 143(1):136–142

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  135. Zhan C, Li B, Lu W et al (2011) Micelle-based brain-targeted drug delivery enabled by a nicotine acetylcholine receptor ligand. Angew Chem Int Ed Engl 50(24):5482–5485

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  136. Zhan C, Meng Q, Lu W et al (2012) Cyclic RGD–polyethylene glycol–Polyethylenimine for intracranial glioblastoma-targeted gene delivery. Chem Asian J 7(1):91–96

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  137. Zhang TT, Li W, Liao W et al (2016) Strategies for transporting nanoparticles across the blood–brain barrier. Biomater Sci 4(2):219–229

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  138. Zhou Q, Mu K, Yang X et al (2015) Glioma-targeting micelles for optical/magnetic resonance dual-mode imaging. Int J Nanomedicine 10:1805–1818

    ArticleΒ  CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

Download references

Acknowledgements

This study was supported by the Bio & Medical Technology Development Program (NRF-2015M3A9E2030125) and was partially supported by the Creative Materials Discovery Program (NRF-2017M3D1A1039289) through the National Research Foundation (NRF) funded by the Korean government (MSIP & MOHW). Also, this study was partially supported by a grant of the Korea Health Technology R&D project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI18C0453).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Yun Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Β© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hwang, H.H., Lee, D.Y. (2020). Protein-Based Drug Delivery in Brain Tumor Therapy. In: Chun, H.J., Reis, R.L., Motta, A., Khang, G. (eds) Bioinspired Biomaterials. Advances in Experimental Medicine and Biology, vol 1249 . Springer, Singapore. https://doi.org/10.1007/978-981-15-3258-0_13

Download citation

Publish with us

Policies and ethics