Skip to main content

Natural Sources and Applications of Demineralized Bone Matrix in the Field of Bone and Cartilage Tissue Engineering

  • Chapter
  • First Online:
Bioinspired Biomaterials

Abstract

Demineralized bone matrix (DBM) is one of the most widely used materials for bone repair. Recently, different strategies in tissue engineering have been used to improve preparation of biomaterials from natural sources suitable for the use in bone regeneration. However, the application of DBM in tissue engineering is still a challenge, because the mechanical properties which are essential to bear tensile and load and the risk of transmission of disease by donor are still a matter of homework. A solution to this problem is to blend natural and synthetic polymers to complement defects and make them ideal biomaterials. An ideal biomaterial improves survival, adhesion, proliferation, induction, and differentiation of cells in the biomaterial after in vivo transplantation. In this review, we will look at the study of DBM made of natural and synthetic materials giving a direction for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toloue EB, Karbasi S, Salehi H, Rafienia M (2019) Potential of an electrospun composite scaffold of poly (3-hydroxybutyrate)-chitosan/alumina nanowires in bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl 99:1075–1091

    CAS  PubMed  Google Scholar 

  2. Behera S (2017) Hydroxyapatite reinforced inherent RGD containing silk fibroin composite scaffolds: promising platform for bone tissue engineering. Nanomedicine 13:1745–1759

    CAS  PubMed  Google Scholar 

  3. Chen L, Hu J, Ran J, Shen X, Tong H (2014) Preparation and evaluation of collagen-silk fibroin/hydroxyapatite nanocomposites for bone tissue engineering. Int J Biol Macromol 65:1–7

    PubMed  Google Scholar 

  4. Guex AG (2017) Highly porous scaffolds of PEDOT: PSS for bone tissue engineering. Acta Biomater 62:91–101

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ding Z (2016) Silk–hydroxyapatite nanoscale scaffolds with programmable growth factor delivery for bone repair. ACS Appl Mater Interfaces 8:24463–24470

    CAS  PubMed  Google Scholar 

  6. Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11:18–25

    CAS  Google Scholar 

  7. Bao CLM (2013) Regenerative medicine and tissue engineering

    Google Scholar 

  8. Fernandez-Yague MA (2015) Biomimetic approaches in bone tissue engineering: integrating biological and physicomechanical strategies. Adv Drug Deliv Rev 84:1–29

    CAS  PubMed  Google Scholar 

  9. Chen P (2019) Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering. Mater Sci Eng C 97:325–335

    CAS  Google Scholar 

  10. Hassan MN, Mahmoud MM, El-Fattah AA, Kandil S (2016) Microwave-assisted preparation of nano-hydroxyapatite for bone substitutes. Ceram Int 42:3725–3744

    CAS  Google Scholar 

  11. Neel EAA, Chrzanowski W, Salih VM, Kim H-W, Knowles JC (2014) Tissue engineering in dentistry. J Dent 42:915–928

    PubMed  Google Scholar 

  12. Bouët G, Marchat D, Cruel M, Malaval L, Vico L (2014) In vitro three-dimensional bone tissue models: from cells to controlled and dynamic environment. Tissue Eng Part B Rev 21:133–156

    PubMed  Google Scholar 

  13. Henkel J (2013) Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone Res 1:216

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Atrian M, Kharaziha M, Emadi R, Alihosseini F (2019) Silk-Laponite® fibrous membranes for bone tissue engineering. Appl Clay Sci 174:90–99

    CAS  Google Scholar 

  15. Zhou J (2017) Improving osteogenesis of three-dimensional porous scaffold based on mineralized recombinant human-like collagen via mussel-inspired polydopamine and effective immobilization of BMP-2-derived peptide. Colloids Surf B: Biointerfaces 152:124–132

    CAS  PubMed  Google Scholar 

  16. Blum L (2016) Atypical femur fractures in patients receiving bisphosphonate therapy: etiology and management. Eur J Orthop Surg Traumatol 26:371–377

    PubMed  Google Scholar 

  17. Daruwalla ZJ (2016) Hip fractures, preceding distal radius fractures and screening for osteoporosis: should we be screening earlier? A minimum 10-year retrospective cohort study at a single centre. Osteoporos Int 27:361–366

    CAS  PubMed  Google Scholar 

  18. Farokhi M (2018) Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol Adv 36:68–91

    CAS  PubMed  Google Scholar 

  19. Khaled E, Saleh M, Hindocha S, Griffin M, Khan WS (2011) Suppl 2: tissue engineering for bone production-stem cells, gene therapy and scaffolds. Open Orthop J 5:289

    PubMed  PubMed Central  Google Scholar 

  20. Acevedo CA (2019) Design of a biodegradable UV-irradiated gelatin-chitosan/nanocomposed membrane with osteogenic ability for application in bone regeneration. Mater Sci Eng C 99:875–886

    CAS  Google Scholar 

  21. Kusuma S, Dickinson L, Gerecht S (2014) in Cardiac regeneration and repair 350–388

    Google Scholar 

  22. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363

    PubMed  PubMed Central  Google Scholar 

  23. Lacroix D, Prendergast PA (2002) Mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech 35:1163–1171

    CAS  PubMed  Google Scholar 

  24. Sikavitsas VI, Temenoff JS, Mikos AG (2001) Biomaterials and bone mechanotransduction. Biomaterials 22:2581–2593

    CAS  PubMed  Google Scholar 

  25. Wang JC (2001) Dose-dependent toxicity of a commercially available demineralized bone matrix material. Spine 26:1429–1435

    CAS  PubMed  Google Scholar 

  26. Bostrom M (2001) An unexpected outcome during testing of commercially available demineralized bone graft materials: how safe are the nonallograft components? Spine 26:1425–1428

    CAS  PubMed  Google Scholar 

  27. Billings E (2009) Cartilage resurfacing of the rabbit knee: the use of an allogeneic demineralized bone matrix-autogeneic perichondrium composite implant. Acta Orthop Scand 61:201–206. https://doi.org/10.3109/17453679008993501

    Article  Google Scholar 

  28. Chen B (2007) Homogeneous osteogenesis and bone regeneration by demineralized bone matrix loading with collagen-targeting bone morphogenetic protein-2. Biomaterials 28:1027–1035

    CAS  PubMed  Google Scholar 

  29. Kiely PD (2014) Evaluation of a new formulation of demineralized bone matrix putty in a rabbit posterolateral spinal fusion model. Spine J 14:2155–2163

    PubMed  Google Scholar 

  30. Jansen EJ (2005) Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering. Biomaterials 26:4423–4431

    CAS  PubMed  Google Scholar 

  31. Strates BS, Stock AJ, Connolly JF (1988) Skeletal repair in the aged: a preliminary study in rabbits. Am J Med Sci 296:266–269

    CAS  PubMed  Google Scholar 

  32. Nishimoto SK, Chang C-H, Gendler E, Stryker WF, Nimni ME (1985) The effect of aging on bone formation in rats: biochemical and histological evidence for decreased bone formation capacity. Calcif Tissue Int 37:617–624

    CAS  PubMed  Google Scholar 

  33. Urist MR (1997) Lipids closely associated with bone morphogenetic protein (BMP) – and induced heterotopic bone formation. With preliminary observations of deficiencies in lipid and osteoinduction in lathyrism in rats. Connect Tissue Res 36:9–20

    CAS  PubMed  Google Scholar 

  34. Xia W, Chang J (2010) Bioactive glass scaffold with similar structure and mechanical properties of cancellous bone. J Biomed Mater Res B Appl Biomater 95:449–455

    PubMed  Google Scholar 

  35. Kimura I, Wei T, Akazawa T, Murata M (2017) Characterization of demineralization behavior of bovine bone granules related to particulate properties. Adv Powder Technol 28:740–746

    CAS  Google Scholar 

  36. Dallari D (2012) A prospective, randomised, controlled trial using a Mg-hydroxyapatite-demineralized bone matrix nanocomposite in tibial osteotomy. Biomaterials 33:72–79

    CAS  PubMed  Google Scholar 

  37. Berven S, Tay BK, Kleinstueck FS, Bradford DS (2001) Clinical applications of bone graft substitutes in spine surgery: consideration of mineralized and demineralized preparations and growth factor supplementation. Eur Spine J 10:S169–S177

    PubMed  PubMed Central  Google Scholar 

  38. Chalmers J, Gray D, Rush J (1975) Observations on the induction of bone in soft tissues. J Bone Joint Surg Br 57:36–45

    CAS  PubMed  Google Scholar 

  39. Dahners LE, Jacobs R (1985) Long bone defects treated with demineralized bone. South Med J 78:933–934

    CAS  PubMed  Google Scholar 

  40. Aly LAA, Hammouda NI (2017) Evaluation of implant stability simultaneously placed with sinus lift augmented with putty versus powder form of demineralized bone matrix in atrophied posterior maxilla. Future Dent J 3:28–34

    Google Scholar 

  41. Tricot M, Deleu P-A, Detrembleur C, Leemrijse T (2017) Clinical assessment of 115 cases of hindfoot fusión with two different types of graft: allograft+ DBM+ bone marrow aspirate versus autograft+ DBM. Orthop Traumatol Surg Res 103:697–702

    CAS  PubMed  Google Scholar 

  42. Torres M, Fernandez J, Dellatorre F, Cortizo A, Oberti T (2019) Purification of alginate improves its biocompatibility and eliminates cytotoxicity in matrix for bone tissue engineering. Algal Res 40:101499

    Google Scholar 

  43. Kim D (2019) Effect of different concentration of demineralized bone powder with gellan gum porous scaffold for the application of bone tissue regeneration. Int J Biol Macromol 134:749–758

    CAS  PubMed  Google Scholar 

  44. Beltrán V (2014) Augmentation of intramembranous bone in rabbit calvaria using an occlusive barrier in combination with demineralized bone matrix (DBM): a pilot study. Int J Surg 12:378–383

    PubMed  Google Scholar 

  45. Sawkins M (2013) Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater 9:7865–7873

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi H, Ye X, He F, Ye J (2019) Improving osteogenesis of calcium phosphate bone cement by incorporating with lysine: an in vitro study. Colloids Surf B: Biointerfaces 177:462–469

    CAS  PubMed  Google Scholar 

  47. Zhang L, Liu L, Thompson R, Chan C (2014) CREB modulates calcium signaling in cAMP-induced bone marrow stromal cells (BMSCs). Cell Calcium 56:257–268

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Li D, Li K, Shan H (2019) Improving biocompatibility of titanium alloy scaffolds by calcium incorporated silicalite-1 coatings. Inorg Chem Commun 102:61–65

    Google Scholar 

  49. Braghirolli DI (2014) The effect of sterilization methods on electronspun poly(lactide-co-glycolide) and subsequent adhesion efficiency of mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 102:700–708

    PubMed  Google Scholar 

  50. Selim M, Bullock AJ, Blackwood KA, Chapple CR, MacNeil S (2011) Developing biodegradable scaffolds for tissue engineering of the urethra. BJU Int 107:296–302

    CAS  PubMed  Google Scholar 

  51. Andrews KD, Hunt JA, Black RA (2007) Effects of sterilisation method on surface topography and in-vitro cell behaviour of electrostatically spun scaffolds. Biomaterials 28:1014–1026

    CAS  PubMed  Google Scholar 

  52. Sefat F (2013) Production, sterilisation and storage of biodegradable electrospun PLGA membranes for delivery of limbal stem cells to the cornea. Procedia Eng 59:101–116

    CAS  Google Scholar 

  53. Horakova J (2018) The effect of ethylene oxide sterilization on electrospun vascular grafts made from biodegradable polyesters. Mater Sci Eng C 92:132–142

    CAS  Google Scholar 

  54. Funatsu K, Kiminami H, Abe Y, Carpenter JF (2019) Impact of ethylene oxide sterilization of polymer-based prefilled syringes on chemical degradation of a model therapeutic protein during storage. J Pharm Sci 108:770–774

    CAS  PubMed  Google Scholar 

  55. Solheim E, Pinholt EM, Bang G, Sudmann E (1995) Ethylene oxide gas sterilization does not reduce the osteoinductive potential of demineralized bone in rats. J Craniofac Surg 6:195–198

    CAS  PubMed  Google Scholar 

  56. Gimeno P (2018) Identification and quantification of ethylene oxide in sterilized medical devices using multiple headspace GC/MS measurement. J Pharm Biomed Anal 158:119–127

    CAS  PubMed  Google Scholar 

  57. Mendes G, Brandão TR, Silva CL (2012) in Sterilisation of biomaterials and medical devices 71–96

    Google Scholar 

  58. Xia X, Wang Y, Cai S, Xie C, Zhu C (2009) Will ethylene oxide sterilization influence the application of novel Cu/LDPE nanocomposite intrauterine devices? Contraception 79:65–70

    CAS  PubMed  Google Scholar 

  59. Thomas RZ, Ruben JL, Jaap J, Huysmans M-CD (2007) Effect of ethylene oxide sterilization on enamel and dentin demineralization in vitro. J Dent 35:547–551

    CAS  PubMed  Google Scholar 

  60. Hastings C Jr (1990) The effects of ethylene oxide sterilization on the in vitro cytotoxicity of a bone replacement material. Toxicol In Vitro 4:757–762

    CAS  PubMed  Google Scholar 

  61. Navarrete L, Hermanson N (1998) The changes in ethylene oxide sterilization and their effect on thermoplastics. In: Medical plastics: degradation resistance & failure analysis. Plastic Design Library, Norwich, p 51

    Google Scholar 

  62. Roman M, Haring AP, Bertucio TJ (2019) The growing merits and dwindling limitations of bacterial cellulose-based tissue engineering scaffolds. Curr Opin Chem Eng 24:98–106

    Google Scholar 

  63. de Souza RFB (2019) Mechanically-enhanced polysaccharide-based scaffolds for tissue engineering of soft tissues. Mater Sci Eng C 94:364–375

    Google Scholar 

  64. Wang S (2019) Pore functionally graded Ti6Al4V scaffolds for bone tissue engineering application. Mater Des 168:107643

    CAS  Google Scholar 

  65. Du L (2019) Hierarchical macro/micro-porous silk fibroin scaffolds for tissue engineering. Mater Lett 236:1–4

    CAS  Google Scholar 

  66. Shao H (2019) 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering. Ceram Int 45:1163–1170

    CAS  Google Scholar 

  67. Dalgic AD, Atila D, Karatas A, Tezcaner A, Keskin D (2019) Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffolds for bone tissue engineering. Mater Sci Eng C 100:735–746

    CAS  Google Scholar 

  68. Mo X-T, Yang Z-M, Qin T-W (2008) Surface configuration properties of partially demineralized bio-derived compact bone scaffolds. Appl Surf Sci 255:449–451

    CAS  Google Scholar 

  69. Dry H (2013) Effect of calcium on the proliferation kinetics of synovium-derived mesenchymal stromal cells. Cytotherapy 15:805–819

    CAS  PubMed  Google Scholar 

  70. Pflum ZE, Palumbo SL, Li W-J (2013) Adverse effect of demineralized bone powder on osteogenesis of human mesenchymal stem cells. Exp Cell Res 319:1942–1955

    CAS  PubMed  Google Scholar 

  71. Bergsma EJ, Rozema FR, Bos RR, De Bruijn WC (1993) Foreign body reactions to resorbable poly (L-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. J Oral Maxillofac Surg 51:666–670

    CAS  PubMed  Google Scholar 

  72. Martin C, Winet H, Bao J (1996) Acidity near eroding polylactide-polyglycolide in vitro and in vivo in rabbit tibial bone chambers. Biomaterials 17:2373–2380

    CAS  PubMed  Google Scholar 

  73. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346

    CAS  PubMed  Google Scholar 

  74. Abedin E, Lari R, Mahdavi Shahri N, Fereidoni M (2018) Development of a demineralized and decellularized human epiphyseal bone scaffold for tissue engineering: a histological study. Tissue Cell 55:46–52

    CAS  PubMed  Google Scholar 

  75. Carvalho MS (2019) Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering. Mater Sci Eng C 99:479–490

    CAS  Google Scholar 

  76. Caswell PT, Zech T (2018) Actin-based cell protrusion in a 3D matrix. Trends Cell Biol 28:823–834

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kasten P (2003) Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, β-tricalcium phosphate and demineralized bone matrix. Biomaterials 24:2593–2603

    CAS  PubMed  Google Scholar 

  78. Aspenberg P, Johnsson E, Thorngren K (1990) Dose-dependent reduction of bone inductive properties by ethylene oxide. J Bone Joint Surg Br 72:1036–1037

    CAS  PubMed  Google Scholar 

  79. Doherty MJ, Mollan R, Wilson D (1993) Effect of ethylene oxide sterilization on human demineralized bone. Biomaterials 14:994–998

    CAS  PubMed  Google Scholar 

  80. Ikeda K, Tsukui T, Imazawa Y, Horie-Inoue K, Inoue S (2012) Conditional expression of constitutively active estrogen receptor α in chondrocytes impairs longitudinal bone growth in mice. Biochem Biophys Res Commun 425:912–917

    CAS  PubMed  Google Scholar 

  81. Li X-F, Wang S-J, Jiang L-S, Dai L-YS (2013) Specific effect of leptin on the expressions of estrogen receptor and extracellular matrix in a model of chondrocyte differentiation. Cytokine 61:876–884

    CAS  PubMed  Google Scholar 

  82. Hattori Y (2012) A selective estrogen receptor modulator inhibits tumor necrosis factor-α-induced apoptosis through the ERK1/2 signaling pathway in human chondrocytes. Biochem Biophys Res Commun 421:418–424

    CAS  PubMed  Google Scholar 

  83. Talwar RM, Wong BS, Svoboda K, Harper RP (2006) Effects of estrogen on chondrocyte proliferation and collagen synthesis in skeletally mature articular cartilage. J Oral Maxillofac Surg 64:600–609

    PubMed  Google Scholar 

  84. Takano H, Aizawa T, Irie T, Kokubun S, Itoi E (2007) Estrogen deficiency leads to decrease in chondrocyte numbers in the rabbit growth plate. J Orthop Sci 12:366

    CAS  PubMed  Google Scholar 

  85. McMillan J (2007) Osteoinductivity of demineralized bone matrix in immunocompromised mice and rats is decreased by ovariectomy and restored by estrogen replacement. Bone 40:111–121

    CAS  PubMed  Google Scholar 

  86. Hersant B, La Padula S, SidAhmed-Mezi M, Rodriguez A, Meningaud J (2017) Use of platelet-rich plasma (PRP) in microsurgery. J Stomatol Oral Maxillofac Surg 118:236–237

    CAS  PubMed  Google Scholar 

  87. Abdullah BJ, Atasoy N, Omer AK (2019) Evaluate the effects of platelet rich plasma (PRP) and zinc oxide ointment on skin wound healing. Ann Med Surg 37:30–37

    Google Scholar 

  88. Atashi F (2019) Does non-activated platelet-rich plasma (PRP) enhance fat graft outcome? An assessment with 3D CT-scan in mice. J Plast Reconst Aesthet Surg 72(4):669–675

    Google Scholar 

  89. Dias LP (2018) Effects of intravesical therapy with platelet-rich plasma (PRP) and Bacillus Calmette-Guérin (BCG) in non-muscle invasive bladder cancer. Tissue Cell 52:17–27

    PubMed  Google Scholar 

  90. van Bergen CJ (2013) Demineralized bone matrix and platelet-rich plasma do not improve healing of osteochondral defects of the talus: an experimental goat study. Osteoarthr Cartil 21:1746–1754

    Google Scholar 

  91. Han B, Woodell-May J, Ponticiello M, Yang Z, Nimni M (2009) The effect of thrombin activation of platelet-rich plasma on demineralized bone matrix osteoinductivity. J Bone Joint Surg Am 91:1459–1470

    PubMed  Google Scholar 

  92. Xue J (2019) An injectable conductive gelatin-PANI hydrogel system serves as a promising carrier to deliver BMSCs for Parkinson’s disease treatment. Mater Sci Eng C 100:584–597

    CAS  Google Scholar 

  93. Dai Y (2017) The paracrine effect of cobalt chloride on BMSCs during cognitive function rescue in the HIBD rat. Behav Brain Res 332:99–109

    CAS  PubMed  Google Scholar 

  94. Man Z (2014) The effects of co-delivery of BMSC-affinity peptide and rhTGF-β1 from coaxial electrospun scaffolds on chondrogenic differentiation. Biomaterials 35:5250–5260

    CAS  PubMed  Google Scholar 

  95. Mauney JR (2005) In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Biomaterials 26:3173–3185

    CAS  PubMed  Google Scholar 

  96. Alidadi S, Oryan A, Bigham-Sadegh A, Moshiri A (2017) Comparative study on the healing potential of chitosan, polymethylmethacrylate, and demineralized bone matrix in radial bone defects of rat. Carbohydr Polym 166:236–248

    CAS  PubMed  Google Scholar 

  97. Saekhor K, Udomsinprasert W, Honsawek S, Tachaboonyakiat W (2019) Preparation of an injectable modified chitosan-based hydrogel approaching for bone tissue engineering. Int J Biol Macromol 123:167–173

    CAS  PubMed  Google Scholar 

  98. Ranganathan S, Balagangadharan K, Selvamurugan N (2019) Chitosan and gelatin-based electrospun fibers for bone tissue engineering. Int J Biol Macromol 133:354

    CAS  PubMed  Google Scholar 

  99. Kara A, Tamburaci S, Tihminlioglu F, Havitcioglu H (2019) Bioactive fish scale incorporated chitosan biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 130:266–279

    CAS  PubMed  Google Scholar 

  100. de Souza FCB, de Souza RFB, Drouin B, Mantovani D, Moraes ÂM (2019) Comparative study on complexes formed by chitosan and different polyanions: potential of chitosan-pectin biomaterials as scaffolds in tissue engineering. Int J Biol Macromol 132:178–189

    Google Scholar 

  101. Lin H (2008) The effect of crosslinking heparin to demineralized bone matrix on mechanical strength and specific binding to human bone morphogenetic protein-2. Biomaterials 29:1189–1197

    CAS  PubMed  Google Scholar 

  102. Ma S (2007) The effect of three-dimensional demineralized bone matrix on in vitro cumulus-free oocyte maturation. Biomaterials 28:3198–3207

    CAS  PubMed  Google Scholar 

  103. Man Z (2016) Transplantation of allogenic chondrocytes with chitosan hydrogel-demineralized bone matrix hybrid scaffold to repair rabbit cartilage injury. Biomaterials 108:157–167

    CAS  PubMed  Google Scholar 

  104. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294

    CAS  PubMed  Google Scholar 

  105. Yin H, Cui L, Liu G, Cen L, Cao Y (2009) Vitreous cryopreservation of tissue engineered bone composed of bone marrow mesenchymal stem cells and partially demineralized bone matrix. Cryobiology 59:180–187

    CAS  PubMed  Google Scholar 

  106. Gong M (2010) Engineered synovial joint condyle using demineralized bone matrix. Mater Sci Eng C 30:531–536

    CAS  Google Scholar 

  107. Mizuno S, Glowacki J (1996) Three-dimensional composite of demineralized bone powder and collagen for in vitro analysis of chondroinduction of human dermal fibroblasts. Biomaterials 17:1819–1825

    CAS  PubMed  Google Scholar 

  108. Van Rossom S, Khatib N, Holt C, Van Assche D, Jonkers I (2018) Subjects with medial and lateral tibiofemoral articular cartilage defects do not alter compartmental loading during walking. Clin Biomech 60:149–156

    Google Scholar 

  109. De Bari C, Roelofs AJ (2018) Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Curr Opin Pharmacol 40:74–80

    PubMed  Google Scholar 

  110. Jones KJ, Mosich GM, Williams RJ (2018) Fresh precut osteochondral allograft core transplantation for the treatment of femoral cartilage defects. Arthrosc Tech 7:e791–e795

    PubMed  PubMed Central  Google Scholar 

  111. Zhong N (2012) MicroRNA-337 is associated with chondrogenesis through regulating TGFBR2 expression. Osteoarthr Cartil 20:593–602

    CAS  Google Scholar 

  112. Bayat M, Momen-Heravi F, Marjani M, Motahhary PA (2010) Comparison of bone reconstruction following application of bone matrix gelatin and autogenous bone grafts to alveolar defects: an animal study. J Cranio-Maxillofac Surg 38:288–292

    Google Scholar 

  113. Nakagawa M, Urist MR (1977) Chondrogenesis in tissue cultures of muscle under the influence of a diffusible component of bone matrix. Proc Soc Exp Biol Med 154:568–572

    CAS  PubMed  Google Scholar 

  114. Li X, Jin L, Balian G, Laurencin CT, Greg Anderson D (2006) Demineralized bone matrix gelatin as scaffold for osteochondral tissue engineering. Biomaterials 27:2426–2433

    CAS  PubMed  Google Scholar 

  115. Lasa JC, Hollinger J, Drohan W, MacPhee M (1995) Delivery of demineralized bone powder by fibrin sealant. Plast Reconstr Surg 96:1409–1417; discussion 1418

    PubMed  Google Scholar 

  116. Han B, Tang B, Nimni ME (2003) Combined effects of phosphatidylcholine and demineralized bone matrix on bone induction. Connect Tissue Res 44:160–166

    CAS  PubMed  Google Scholar 

  117. Pinholt EM, Solheim E, Bang G, Sudmann E (1991) Bone induction by composite of bioerodible polyorthoester and demineralized bone matrix in rats. Acta Orthop Scand 62:476–480

    CAS  PubMed  Google Scholar 

  118. Chung Y-M, Simmons KL, Gutowska A, Jeong B (2002) Sol−gel transition temperature of PLGA-g-PEG aqueous solutions. Biomacromolecules 3:511–516

    CAS  PubMed  Google Scholar 

  119. Tian M (2012) Delivery of demineralized bone matrix powder using a thermogelling chitosan carrier. Acta Biomater 8:753–762

    CAS  PubMed  Google Scholar 

  120. Van Haastert R, Grote J, Van Blitterswijk C, Prewett A (1994) Osteoinduction within PEO/PBT copolymer implants in cranial defects using demineralized bone matrix. J Mater Sci Mater Med 5:764–769

    Google Scholar 

  121. Sui S, Wang X, Liu P, Yan Y, Zhang R (2009) Cryopreservation of 3D constructs based on a controlled cell assembling technology. J Bioact Compat Polym 24:473–487

    CAS  Google Scholar 

  122. Wang X, Liu C (2018) Fibrin hydrogels for endothelialized liver tissue engineering with a predesigned vascular network. Polymers 10:1048

    PubMed Central  Google Scholar 

  123. Wang X, Liu C (2018) 3D bioprinting of adipose-derived stem cells for organ manufacturing. In: Enabling cutting edge technology for regenerative medicine. Springer, SBM Singapore Pte Ltd., Singapore, pp 3–14

    Google Scholar 

  124. Liu F, Chen Q, Liu C, Ao Q, Tian X, Fan J, Tong H, Wang X (2018) Natural polymers for organ 3D bioprinting. Polymers 10:1278

    PubMed Central  Google Scholar 

  125. Wang X, Ao Q, Tian X, Fan J, Wei Y, Hou W, Tong H, Bai S (2016) 3D bioprinting technologies for hard tissue and organ engineering. Materials 9:802

    PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilson Khang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cho, H. et al. (2020). Natural Sources and Applications of Demineralized Bone Matrix in the Field of Bone and Cartilage Tissue Engineering. In: Chun, H.J., Reis, R.L., Motta, A., Khang, G. (eds) Bioinspired Biomaterials. Advances in Experimental Medicine and Biology, vol 1249 . Springer, Singapore. https://doi.org/10.1007/978-981-15-3258-0_1

Download citation

Publish with us

Policies and ethics