Skip to main content

RF Performance of Ultra-wide Bandgap HEMTs

  • Chapter
  • First Online:
Emerging Trends in Terahertz Solid-State Physics and Devices

Abstract

In the current scenario of high-speed electronics technology, many application areas—broadband Internet access, fifth-generation (4G/5G) mobile systems, and cutting-edge military applications—are realizing very-fast to reality. To cater these ever-increasing demands, radio-frequency (RF) and microwave power amplifiers are in prime-attention, and will be constantly evaluated on price versus performance metrics. Ultra-wide bandgap (UWBG) high electron mobility transistors (HEMTs) are promising candidates for switching power applications owing to very-high breakdown strength of the material. And higher values of energy band gap (Eg) and electron mobility enabled low on-resistance (RON) guarantees superior power handling capability. UWBG HEMTs having two-dimensional electron gas (2DEG) channel with high carrier concentration and high electron mobility are fast gaining space in high frequency and power switching applications. Also, these UWBG materials having large optical phonon energy, Eop ~92 meV (GaN), ~45 meV (β-Ga2O3) make them most suitable semiconductor materials for the imminent terahertz (THz, 1012 Hz) frequency applications: THz imaging and spectroscopy. In this paper, we present latest technological developments of the gallium nitride (GaN)- and beta-phase of gallium oxide (β-Ga2O3)-based HEMTs, with careful and quantitative investigation of their suitability toward radio frequency (RF), high power device applications, and THz emerging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.O. Johnson, Physical limitation on frequency and power parameters of transistors. RCA Rev. 163–176 (1965)

    Google Scholar 

  2. B.J. Baliga, Semiconductors for high-voltage, vertical channel field-effect transistors. J. Appl. Phys. 53(3), 1759–1764 (1982)

    Article  ADS  Google Scholar 

  3. B.J. Baliga, Power semiconductor device figure of merit for high-frequency applications. IEEE Electron Device Lett. 10(10), 455–457 (1989)

    Article  ADS  Google Scholar 

  4. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl. Phys. Lett. 100(1), 013504 (2012)

    Article  ADS  Google Scholar 

  5. R. Reiner, P. Waltereit, F. Benkhelifa, S. Muller, S. Müller, H. Walcher, S. Wagner, R. Quay, M. Schlechtweg, O. Ambacher, Fractal structures for low-resistance large area AlGaN/GaN power transistors, in 2012 24th International Symposium on Power Semiconductor Devices and ICs, IEEE, 3 June 2012, pp. 341–344

    Google Scholar 

  6. U.K. Mishra, L. Shen, T.E. Kazior, Y.F. Wu, GaN-based RF power devices and amplifiers. Proc. IEEE 96(2), 287–305 (2008)

    Article  Google Scholar 

  7. J.H. Choi, High-speed devices and circuits with THz applications (CRC Press, 2014)

    Google Scholar 

  8. F. Medjdoub, Gallium nitride (GaN): physics, devices, and technology. (CRC Press, 2015)

    Google Scholar 

  9. J.L. Prince, J.M. Links, Medical imaging signals and systems (Pearson Prentice Hall, Upper Saddle River, 2006)

    Google Scholar 

  10. X. Wan, W.S. Zhou, S. Ren, D.G. Liu, J. Xu, H.L. Bo, E.X. Zhang, R.D. Schrimpf, D.M. Fleetwood, T.P. Ma, SEB hardened power MOSFETs with high-K dielectrics. IEEE Trans. Nucl. Sci. 62(6), 2830–2836 (2015)

    Article  ADS  Google Scholar 

  11. K. Ahi, Review of GaN-based devices for terahertz operation. Opt. Eng. 56(9), 090901 (2017)

    Article  ADS  Google Scholar 

  12. M. Asif Khan, J.N. Kuznia, D.T. Olson, W.J. Schaff, J.W. Burm, M.S. Shur, Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor. Appl. Phys. Lett. 65(9), 1121–1123 (1994)

    Google Scholar 

  13. Y.F. Wu, B.P. Keller, S. Keller, D. Kapolnek, S.P. Denbaars, U.K. Mishra, Measured microwave power performance of AlGaN/GaN MODFET. IEEE Electron Device Lett. 17(9), 455–457 (1996)

    Article  ADS  Google Scholar 

  14. M.A. Khan, M.S. Shur, Q.C. Chen, J.N. Kuznia, Current/voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias. Electron. Lett. 30(25), 2175–2176 (1994)

    Article  Google Scholar 

  15. S.C. Binari, K. Ikossi, J.A. Roussos, W. Kruppa, D. Park, H.B. Dietrich, D.D. Koleske, A.E. Wickenden, R.L. Henry, Trapping effects and microwave power performance in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 48(3), 465–471 (2001)

    Article  ADS  Google Scholar 

  16. B.M. Green, K.K. Chu, E.M. Chumbes, J.A. Smart, J.R. Shealy, L.F. Eastman, The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs. IEEE Electron Device Lett. 21(6), 268–270 (2000)

    Article  ADS  Google Scholar 

  17. Y.F. Wu, D. Kapolnek, J. Ibbetson, N.Q. Zhang, P. Parikh, B.P. Keller, U.K. Mishra, High Al-content AlGaN/GaN HEMTs on SiC substrates with very high power performance, in International Electron Devices Meeting 1999, Technical Digest (Cat. No. 99CH36318), IEEE, 5 Dec 1999, pp. 925–927

    Google Scholar 

  18. N.X. Nguyen, M. Micovic, W.S. Wong, P. Hashimoto, L.M. McCray, P. Janke, C. Nguyen, High performance microwave power GaN/AlGaN MODFETs grown by RF-assisted MBE. Electron. Lett. 36(5), 468–469 (2000)

    Article  Google Scholar 

  19. Y. Ando, Y. Okamoto, H. Miyamoto, T. Nakayama, T. Inoue, M. Kuzuhara, 10-W/mm AlGaN-GaN HFET with a field modulating plate. IEEE Electron Device Lett. 24(5), 289–291 (2003)

    Article  ADS  Google Scholar 

  20. J.R. Shealy, V. Kaper, V. Tilak, T. Prunty, J.A. Smart, B. Green, L.F. Eastman, An AlGaN/GaN high-electron-mobility transistor with an AlN sub-buffer layer. J. Phys. Condens. Matter 14(13), 3499 (2002)

    Article  ADS  Google Scholar 

  21. W.L. Pribble, J.W. Palmour, S.T. Sheppard, R.P. Smith, S.T. Allen, T.J. Smith, Z. Ring, J.J. Sumakeris, A.W. Saxler, J.W. Milligan, Applications of SiC MESFETs and GaN HEMTs in power amplifier design, in 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 02CH37278), IEEE, vol. 3, 2 June 2002, pp. 1819–1822

    Google Scholar 

  22. Y.F. Wu, A. Saxler, M. Moore, R.P. Smith, S. Sheppard, P.M. Chavarkar, T. Wisleder, U.K. Mishra, P. Parikh, 30-W/mm GaN HEMTs by field plate optimization. IEEE Electron Device Lett. 25(3), 117–119 (2004)

    Article  ADS  Google Scholar 

  23. Y. Okamoto, Y. Ando, K. Hataya, T. Nakayama, H. Miyamoto, T. Inoue, M. Senda, K. Hirata, M. Kosaki, N. Shibata, M. Kuzuhara, A 149 W recessed-gate AlGaN/GaN FP-FET, in 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No. 04CH37535), IEEE, vol. 3, 6 June 2004, pp. 1351–1354

    Google Scholar 

  24. Y.F. Wu, M. Moore, A. Saxler, T. Wisleder, P. Parikh, 40-W/mm double field-plated GaN HEMTs, in 2006 64th Device Research Conference, IEEE, 26 June 2006, pp. 151–152

    Google Scholar 

  25. M.Y. Kao, C. Lee, R. Hajji, P. Saunier, H.Q. Tserng, AlGaN/GaN HEMTs with PAE of 53% at 35 GHz for HPA and multi-function MMIC applications, in 2007 IEEE/MTT-S International Microwave Symposium, IEEE, 3 June 2007, pp. 627–629

    Google Scholar 

  26. Y. Murase, A. Wakejima, T. Inoue, K. Yamanoguchi, M. Tanomura, T. Nakayama, Y. Okamoto, K. Ota, Y. Ando, N. Kuroda, K. Matsunaga, CW 20-W AlGaN/GaN FET power amplifier for quasi-millimeter wave applications, in 2007 IEEE Compound Semiconductor Integrated Circuits Symposium, IEEE, 14 Oct 2007, pp. 1–4

    Google Scholar 

  27. D.C. Dumka, T.M. Chou, F. Faili, D. Francis, F. Ejeckam, AlGaN/GaN HEMTs on diamond substrate with over 7 W/mm output power density at 10 GHz. Electron. Lett. 49(20), 1298–1299 (2013)

    Article  Google Scholar 

  28. P.C. Chao, K. Chu, J. Diaz, C. Creamer, S. Sweetland, R. Kallaher, C. McGray, G.D. Via, J. Blevins, GaN-on-diamond HEMTs with 11 W/mm output power at 10GHz. MRS Advances 1(2), 147–155 (2016)

    Article  Google Scholar 

  29. M. Micovic, D.F. Brown, D. Regan, J. Wong, Y. Tang, F. Herrault, D. Santos, S.D. Burnham, J. Tai, E. Prophet, I. Khalaf, High frequency GaN HEMTs for RF MMIC applications, in 2016 IEEE International Electron Devices Meeting (IEDM), IEEE, 3 Dec 2016, pp. 3–3

    Google Scholar 

  30. B. Romanczyk, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, X. Zheng, S. Keller, U.K. Mishra, Demonstration of constant 8 W/mm power density at 10, 30, and 94 GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs. IEEE Trans. Electron Devices 65(1), 45–50 (2017)

    Article  ADS  Google Scholar 

  31. Y. Lu, X. Ma, L. Yang, B. Hou, M. Mi, M. Zhang, J. Zheng, H. Zhang, Y. Hao, High RF performance AlGaN/GaN HEMT fabricated by recess-arrayed ohmic contact technology. IEEE Electron Device Lett. 39(6), 811–814 (2018)

    Article  ADS  Google Scholar 

  32. W. Lu, V. Kumar, E.L. Piner, I. Adesida, DC, RF, and microwave noise performance of AlGaN-GaN field effect transistors dependence of aluminum concentration. IEEE Trans. Electron Devices 50(4), 1069–1074 (2003)

    Article  ADS  Google Scholar 

  33. T. Palacios, C.S. Suh, A. Chakraborty, S. Keller, S.P. DenBaars, U.K. Mishra, High-performance E-mode AlGaN/GaN HEMTs. IEEE Electron Device Lett. 27(6), 428–430 (2006)

    Article  ADS  Google Scholar 

  34. J.W. Chung, W.E. Hoke, E.M. Chumbes, T. Palacios, AlGaN/GaN HEMT With 300-GHz fmax. IEEE Electron Device Lett. 31(3), 195–197 (2010)

    Article  ADS  Google Scholar 

  35. D. Denninghoff, J. Lu, M. Laurent, E. Ahmadi, S. Keller, U.K. Mishra, N-polar GaN/InAlN MIS-HEMT with 400-GHz fmax, in 70th Device Research Conference, IEEE, 18 June 2012, pp. 151–152

    Google Scholar 

  36. A.G. Baca, B.A. Klein, J.R. Wendt, S.M. Lepkowski, C.D. Nordquist, A.M. Armstrong, A.A. Allerman, E.A. Douglas, R.J. Kaplar, RF performance of Al 0.85 Ga 0.15 N/Al 0.70 Ga 0.30 N high electron mobility transistors with 80-nm gates. IEEE Electron Device Lett. 40(1), 17–20 (2018)

    Google Scholar 

  37. D. Qiao, Z.F. Guan, J. Carlton, S.S. Lau, G.J. Sullivan, Low resistance ohmic contacts on AlGaN/GaN structures using implantation and the “advancing” Al/Ti metallization. Appl. Phys. Lett. 74(18), 2652–2654 (1999)

    Article  ADS  Google Scholar 

  38. H. Yu, L. McCarthy, S. Rajan, S. Keller, S. Denbaars, J. Speck, U. Mishra, Ion implanted AlGaN-GaN HEMTs with nonalloyed ohmic contacts. IEEE Electron Device Lett. 26(5), 283–285 (2005)

    Article  ADS  Google Scholar 

  39. F. Recht, L. McCarthy, S. Rajan, A. Chakraborty, C. Poblenz, A. Corrion, J.S. Speck, U.K. Mishra, Nonalloyed ohmic contacts in AlGaN/GaN HEMTs by ion implantation with reduced activation annealing temperature

    Google Scholar 

  40. F. Recht, L. McCarthy, L. Shen, C. Poblenz, A. Corrion, J.S. Speck, U.K. Mishra, AlGaN/GaN HEMTs with large angle implanted nonalloyed ohmic contacts, in 2007 65th Annual Device Research Conference, IEEE, 18 June 2007, pp. 37–38

    Google Scholar 

  41. X.C. Fu, Y. Lv, L.J. Zhang, T. Zhang, X.J. Li, X. Song, Z. Zhang, Y. Fang, Z. Feng, High-frequency InAlN/GaN HFET with fmax over 400 GHz. Electron. Lett. 54(12), 783–785 (2018)

    Article  Google Scholar 

  42. M. Dyakonov, M. Shur, Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current. Phys. Rev. Lett. 71(15), 2465 (1993)

    Article  ADS  Google Scholar 

  43. W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Łusakowski, K. Karpierz, M. Sakowicz, G. Valusis, D. Seliuta, I. Kasalynas, Field effect transistors for terahertz detection: Physics and first imaging applications. J. Infrared Millim. Terahertz Waves 30(12), 1319–1337 (2009)

    Google Scholar 

  44. F. Friederich, W. Von Spiegel, M. Bauer, F. Meng, M.D. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, THz active imaging systems with real-time capabilities. IEEE Trans. Terahertz Sci. Technol 1(1), 183–200 (2011)

    Article  ADS  Google Scholar 

  45. J.D. Sun, Y.F. Sun, D.M. Wu, Y. Cai, H. Qin, B.S. Zhang, High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor. Appl. Phys. Lett. 100(1), 013506 (2012)

    Article  ADS  Google Scholar 

  46. J.D. Sun, H. Qin, R.A. Lewis, Y.F. Sun, X.Y. Zhang, Y. Cai, D.M. Wu, B.S. Zhang, Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector. Appl. Phys. Lett. 100(17), 173513 (2012)

    Article  ADS  Google Scholar 

  47. A. Lisauskas, M. Bauer, S. Boppel, M. Mundt, B. Khamaisi, E. Socher, R. Venckevičius, L. Minkevičius, I. Kašalynas, D. Seliuta, G. Valušis, Exploration of terahertz imaging with silicon MOSFETs. J. Infrared Millim. Terahertz Waves 35(1), 63–80 (2014)

    Article  Google Scholar 

  48. H. Hou, Z. Liu, J.H. Teng, T. Palacio, S.J. Chua, Modelling of GaN HEMTs as terahertz detectors based on self-mixing. Proc. Eng. 1(141), 98–102 (2016)

    Article  Google Scholar 

  49. Q. Li, N. An, Y. Tang, J. Jiang, L. Li, J. Zeng, W. Tan, Metal-semiconductor-metal (MSM) varactor based on AlGaN/GaN heterostructure with cutoff frequency of 914.5 GHz for terahertz frequency multiplication, in 2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems (ICICM), IEEE, 24 Nov 2018, pp. 86–89

    Google Scholar 

  50. M. Bauer, A. Rämer, S.A. Chevtchenko, K. Osipov, D. Čibiraitė, S. Pralgauskaité, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, H.G. Roskos, A high-sensitivity AlGaN/GaN HEMT terahertz detector with integrated broadband bow-tie antenna. IEEE Trans. Terahertz Sci. Technol. (2019)

    Google Scholar 

  51. M. Higashiwaki, G.H. Jessen, Guest editorial: the dawn of gallium oxide microelectronics. Appl. Phys. Lett. 112(6), 060401. https://doi.org/10.1063/1.5017845

  52. S.J. Pearton, F. Ren, M. Tadjer, J. Kim, Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS. J. Appl. Phys. 124(22), 220901 (2018)

    Article  Google Scholar 

  53. J. Yang, F. Ren, M. Tadjer, S.J. Pearton, A. Kuramata, Ga2O3 Schottky rectifiers with 1 ampere forward current, 650 V reverse breakdown and 26.5 MW cm−2 figure-of-merit. AIP Advances 8(5), 055026 (2018)

    Google Scholar 

  54. H. Dong, H. Xue, Q. He, Y. Qin, G. Jian, S. Long, M. Liu, Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material. J. Semiconductors 40(1), 011802 (2019)

    Article  ADS  Google Scholar 

  55. A.J. Green, K.D. Chabak, M. Baldini, N. Moser, R. Gilbert, R.C. Fitch, G. Wagner, Z. Galazka, J. Mccandless, A. Crespo, K. Leedy, β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett. 38(6), 790–793 (2017)

    Article  ADS  Google Scholar 

  56. G. Jessen, K. Chabak, A. Green, N. Moser, J. McCandless, K. Leedy, A. Crespo, S. Tetlak, Gallium oxide technologies and applications, in 2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), IEEE, 22 Oct 2017, pp. 1–4

    Google Scholar 

  57. M. Singh, M.A. Casbon, M.J. Uren, J.W. Pomeroy, S. Dalcanale, S. Karboyan, P.J. Tasker, M.H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, Pulsed large signal RF performance of field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett. 39(10), 1572–1575 (2018)

    Article  ADS  Google Scholar 

  58. M.D. Santia, N. Tandon, J.D. Albrecht, Lattice thermal conductivity in β-Ga2O3 from first principles. Appl. Phys. Lett. 107(4), 041907 (2015)

    Article  ADS  Google Scholar 

  59. S. Kumar, R. Soman, A.S. Pratiyush, R. Muralidharan, D.N. Nath, A performance comparison between β-Ga2O3 and GaN HEMTs. IEEE Trans. Electron Devices 66(8), 3310–3317 (2019)

    Article  ADS  Google Scholar 

  60. R. Gaska, J.W. Yang, A. Osinsky, Q. Chen, M.A. Khan, A.O. Orlov, G.L. Snider, M.S. Shur, Electron transport in AlGaN–GaN heterostructures grown on 6H–SiC substrates. Appl. Phys. Lett. 72(6), 707–709 (1998)

    Article  ADS  Google Scholar 

  61. L. Ardaravičius, A. Matulionis, J. Liberis, O. Kiprijanovic, M. Ramonas, L.F. Eastman, J.R Shealy, A. Vertiatchik, Electron drift velocity in AlGaN/GaN channel at high electric fields. Appl. Phys. Lett. 83(19) (2003) 4038–4040; F. Medjdoub, Gallium nitride (GaN): Physics, devices, and technology. CRC Press (2015)

    Google Scholar 

  62. Y. Kang, K. Krishnaswamy, H. Peelaers, C.G. Van de Walle, Fundamental limits on the electron mobility of β-Ga2O3. J. Phys. Condens. Matter 29(23), 234001 (2017)

    Article  ADS  Google Scholar 

  63. K. Ghosh, U. Singisetti, Ab initio velocity-field curves in monoclinic β-Ga2O3. J. Appl. Phys. 122(3), 035702 (2017)

    Article  ADS  Google Scholar 

  64. Y. Zhang, Z. Xia, J. Mcglone, W. Sun, C. Joishi, A.R. Arehart, S.A. Ringel, S. Rajan, Evaluation of low-temperature saturation velocity in β-(AlxGa1–x)2O3/Ga2O3 modulation-doped field-effect transistors. IEEE Trans. Electron Devices 66(3), 1574–1578 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This publication is an outcome of the R&D work undertaken by the project under the Visvesvaraya Ph.D. Scheme of Ministry of Electronics and Information Technology (MeitY), Govt. of India, being implemented by Digital India Corporation. Acknowledgement also goes to New Jersey Institute of Technology (NJIT), Newark, USA, for facilitating the visit of T. R. Lenka for collaborative research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Lenka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R. et al. (2020). RF Performance of Ultra-wide Bandgap HEMTs. In: Biswas, A., Banerjee, A., Acharyya, A., Inokawa, H., Roy, J. (eds) Emerging Trends in Terahertz Solid-State Physics and Devices. Springer, Singapore. https://doi.org/10.1007/978-981-15-3235-1_4

Download citation

Publish with us

Policies and ethics