Skip to main content

Mechanical Stirring Induces Hetero-double-helix Formation and Self-assembly of Pseudoenantiomeric Oxymethylenehelicene Oligomers in Solution

  • Chapter
  • First Online:
Synthesis of Optically Active Oxymethylenehelicene Oligomers and Self-assembly Phenomena at a Liquid–Solid Interface

Part of the book series: Springer Theses ((Springer Theses))

  • 115 Accesses

Abstract

A 1:1 mixture of pseudoenantiomeric oxymethylene helicene (P)-pentamers and (M)-hexamers formed hetero-double-helix and self-assembled as a result of mechanical stirring in solution at 25 °C. No aggregation occurred without stirring, and heteroaggregation was accelerated at high stirring rates. Repeatedly alternating between mechanical stirring and stopping respectively induced and then ceased the heteroaggregation. Sonication also promoted the heteroaggregation, which did not occur at high pressures or during centrifugation. Mechanisms based on friction due to mechanical stirring, which generated local and temporal high-temperature domains, are considered. It is shown that different methods of mechanical stimulation, namely, stirring and surface contact, induce enantiomeric heteroaggregate formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lim CT, Bershadsky A, Sheetz MP (2010) Mechanobiology. J R Soc Interface 7:S291

    Article  PubMed  PubMed Central  Google Scholar 

  2. MacQueen L, Sun Y, Simmons CA (2013) Mesenchymal stem cell mechanobiology and emerging experimental platforms. J R Soc Interface 10:20130179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lecuit T, Lenne P-F (2007) Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Rev Mol Cell Biol 8:633

    Article  CAS  Google Scholar 

  4. Boldyreva E (2013) Mechanochemistry of inorganic and organic systems: what is similar, what is different? Chem Soc Rev 42:7719

    Article  CAS  PubMed  Google Scholar 

  5. Ribas-Arino J, Marx D (2012) Covalent Mechanochemistry: Theoretical Concepts and Computational Tools with Applications to Molecular Nanomechanics. Chem Rev 112:5412

    Article  CAS  PubMed  Google Scholar 

  6. Beyer MK, Clausen-Schaumann H (2005) Mechanochemistry:  The Mechanical Activation of Covalent Bonds. Chem Rev 105:2921

    Article  CAS  PubMed  Google Scholar 

  7. May PA, Moore JS (2013) Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem Soc Rev 42:7497

    Article  CAS  PubMed  Google Scholar 

  8. Crusats J, El-Hachemi Z, Ribó JM (2010) Hydrodynamic effects on chiral induction. Chem Soc Rev 39:569

    Article  CAS  PubMed  Google Scholar 

  9. Caruso MM, Davis DA, Shen Q, Odom SA, Sottos NR, White SR, Moore JS (2009) Mechanically-Induced Chemical Changes in Polymeric Materials. Chem Rev 109:5755

    Article  CAS  PubMed  Google Scholar 

  10. Hara M, Komoda M, Hasei H, Yashima M, Ikeda S, Takata T, Kondo JN, Domen K (2000) A Study of Mechano-Catalysts for Overall Water Splitting. J Phys Chem B 104:780

    Article  CAS  Google Scholar 

  11. Ikeda S, Takata T, Komoda M, Hara M, Kondo JN, Domen K, Tanaka A, Hosono H, Kawazoe H (1999) Mechano-catalysis—a novel method for overall water splitting. Phys Chem Chem Phys 1:4485

    Article  CAS  Google Scholar 

  12. Ohhashi Y, Kihara M, Naiki H, Goto Y (2005) Ultrasonication-induced Amyloid Fibril Formation of β2-Microglobulin. J Biol Chem 280:32843

    Article  CAS  PubMed  Google Scholar 

  13. Fung SY, Yang H, Chen P (2007) Formation of colloidal suspension of hydrophobic compounds with an amphiphilic self-assembling peptide. Colloid Surf B: Biointerfaces 55:200

    Article  CAS  PubMed  Google Scholar 

  14. Helen W, de Leonardis P, Ulijn RV, Gough J, Tirelli N (2011) Mechanosensitive peptide gelation: mode of agitation controls mechanical properties and nano-scale morphology. Soft Matter 7:1732

    Article  CAS  Google Scholar 

  15. Maity S, Kumar P, Haldar D (2011) Sonication-induced instant amyloid-like fibril formation and organogelation by a tripeptide. Soft Matter 7:5239

    Article  CAS  Google Scholar 

  16. Shen Z, Wang T, Shi L, Tang Z, Liu M (2015) Strong circularly polarized luminescence from the supramolecular gels of an achiral gelator: tunable intensity and handedness. Chem Sci 6:4267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Okano K, Arteaga O, Ribo JM, Yamashita T (2011) Emergence of Chiral Environments by Effect of Flows: The Case of an Ionic Oligomer and Congo Red Dye. Chem Eur J 17:9288

    Article  CAS  PubMed  Google Scholar 

  18. Reddy A, Srivastava A (2014) Mechano-responsive gelation of water by a short alanine-derivative. Soft Matter 10:4863

    Article  Google Scholar 

  19. Xie Z, Zhang A, Ye L, Wang X, Feng Z (2009) Shear-assisted hydrogels based on self-assembly of cyclic dipeptide derivatives. J Mater Chem 19:6100

    Article  CAS  Google Scholar 

  20. van Herpt JT, Stuart MCA, Browne WR, Feringa BL (2013) Mechanically Induced Gel Formation. Langmuir 29:8763

    Article  PubMed  CAS  Google Scholar 

  21. Teunissen AJP, Nieuwenhuizen MML, Rodríguez-Llansola F, Palmans ARA, Meijer EW (2014) Mechanically Induced Gelation of a Kinetically Trapped Supramolecular Polymer. Macromolecules 47:8429

    Article  CAS  Google Scholar 

  22. Piepenbrock M-OM, Clarke N, Steed JW (2010) Shear induced gelation in a copper(ii) metallogel: new aspects of ion-tunable rheology and gel-reformation by external chemical stimuli. Soft Matter 6:3541

    Article  CAS  Google Scholar 

  23. Cravotto G, Cintas P (2009) Molecular self-assembly and patterning induced by sound waves. The case of gelation. Chem Soc Rev 38:2684

    Article  CAS  PubMed  Google Scholar 

  24. Liu J-W, Ma J-T, Chen C-F (2011) Structure–property relationship of a class of efficient organogelators and their multistimuli responsiveness. Tetrahedron 67:85

    Article  CAS  Google Scholar 

  25. Okano K, Taguchi M, Fujiki M, Yamashita T (2011) Circularly Polarized Luminescence of Rhodamine B in a Supramolecular Chiral Medium Formed by a Vortex Flow. Angew Chem Int Ed 50:12474

    Article  CAS  Google Scholar 

  26. Delgado J, Castillo R (2007) Shear-induced structures formed during thixotropic loops in dilute worm-micelle solutions. J Coll Int Sci 312:481

    Article  CAS  Google Scholar 

  27. Vasudevan M, Buse E, Lu D, Krishna H, Kalyanaraman R, Shen AQ, Khomami B, Sureshkumar R (2010) Irreversible nanogel formation in surfactant solutions by microporous flow. Nat Mater 9:436

    Article  CAS  PubMed  Google Scholar 

  28. Tsuda A, Alam MdA, Harada T, Yamaguchi T, Ishii N, Aida T (2007) Spectroscopic visualization of vortex flows using dye-containing nanofibers. Angew Chem Int Ed 46:8198

    Article  CAS  PubMed  Google Scholar 

  29. Escudero C, Crusats J, Díez-Pérez I, El-Hachemi Z, Ribó JM (2006) Folding and Hydrodynamic Forces in J‐Aggregates of 5‐Phenyl‐10,15,20‐tris(4‐sulfophenyl)porphyrin. Angew Chem Int Ed 45:8032

    Article  CAS  Google Scholar 

  30. Ohno O, Kaizu Y, Kobayashi H (1993) J‐aggregate formation of a water‐soluble porphyrin in acidic aqueous media. J Chem Phys 99:4128

    Article  CAS  Google Scholar 

  31. Ribo JM, Crusats J, Sagués F, Claret J, Rubires R (2001) Chiral Sign Induction by Vortices During the Formation of Mesophases in Stirred Solutions. Science 292:2063

    Article  CAS  PubMed  Google Scholar 

  32. Carnall JMA, Waudby CA, Belenguer AM, Stuart MCA, Peyralans JJ-P, Otto S (2010) Mechanosensitive self-replication driven by self-organization. Science 327:1502

    Article  CAS  PubMed  Google Scholar 

  33. Shigeno M, Sawato T, Yamaguchi M (2015) Fibril Film Formation of Pseudoenantiomeric Oxymethylenehelicene Oligomers at the Liquid–Solid Interface: Structural Changes, Aggregation, and Discontinuous Heterogeneous Nucleation. Chem Eur J 21:17676

    Article  CAS  PubMed  Google Scholar 

  34. Lin X, Kurata H, Prabhu DD, Yamauchi M, Ohba T, Yagai S (2017) Water-induced helical supramolecular polymerization and gel formation of an alkylene-tethered perylene bisimide dyad. Chem Commun 53:168

    Article  CAS  Google Scholar 

  35. Yamauchi M, Ohba T, Karatsu T, Yagai S (2015) Photoreactive helical nanoaggregates exhibiting morphology transition on thermal reconstruction. Nat Commun 6:8936

    Article  CAS  PubMed  Google Scholar 

  36. Banno M, Yamaguchi T, Nagai K, Kaiser C, Hecht S, Yashima E (2012) Optically Active, Amphiphilic Poly(meta-phenylene ethynylene)s: Synthesis, Hydrogen-Bonding Enforced Helix Stability, and Direct AFM Observation of Their Helical Structures. J Am Chem Soc 134:8718

    Article  CAS  PubMed  Google Scholar 

  37. Kasem H, Brunel JF, Dufrénoy P, Siroux M, Desmet B (2011) Thermal levels and subsurface damage induced by the occurrence of hot spots during high-energy braking. Wear 270:355

    Article  CAS  Google Scholar 

  38. Sutter G, Ranc N (2010) Flash temperature measurement during dry friction process at high sliding speed. Wear 268:1237

    Article  CAS  Google Scholar 

  39. Rowe KG, Bennett AI, Krick BA, Sawyer WG (2013) In situ thermal measurements of sliding contacts. Tribol Int 62:208

    Article  CAS  Google Scholar 

  40. Amiri M, Khonsari MM (2010) On the Thermodynamics of Friction and Wear―A Review. Entropy 12:1021

    Article  CAS  Google Scholar 

  41. Bang JH, Suslick KS (2010) Applications of Ultrasound to the Synthesis of Nanostructured Materials. Adv Mater 22:1039

    Article  CAS  PubMed  Google Scholar 

  42. Xu H, Zeiger BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42:2555

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsukasa Sawato .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sawato, T. (2020). Mechanical Stirring Induces Hetero-double-helix Formation and Self-assembly of Pseudoenantiomeric Oxymethylenehelicene Oligomers in Solution. In: Synthesis of Optically Active Oxymethylenehelicene Oligomers and Self-assembly Phenomena at a Liquid–Solid Interface. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-3192-7_4

Download citation

Publish with us

Policies and ethics