Skip to main content

Fibril Film Formation of Pseudoenantiomeric Oxymethylenehelicene Oligomers at the Liquid–Solid Interface

  • Chapter
  • First Online:
  • 103 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

A 1:1 mixture of pseudoenantiomeric oxymethylene helicene (P)-pentamer and (M)-hexamer formed a hetero-double-helix, which self-assembled into one-dimensional fibril films at liquid–solid interfaces. Discontinuous heterogeneous nucleation occurred, which involved the formation of 50-nm-diameter particles and subsequent fibril growth from these particles. The fibril film was formed on the solid surface, and the molecules remained dissociated in solution. The fibril film formation was affected by seeding and the solid surface materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Babu SS, Praveen VK, Ajayaghosh A (2014) Functional π-Gelators and Their Applications. Chem Rev 114:1973

    Article  CAS  Google Scholar 

  2. Hirst AR, Escuder B, Miravet JF, Smith DK (2008) High‐Tech Applications of Self‐Assembling Supramolecular Nanostructured Gel‐Phase Materials: From Regenerative Medicine to Electronic Devices. Angew Chem Int Ed 47:8002; (2008) Angew Chem 120:8122

    Article  CAS  Google Scholar 

  3. Sakakibara K, Chithra P, Das B, Mori T, Akada M, Labuta J, Tsuruoka T, Maji S, Furumi S, Shrestha LK, Hill JP, Acharya S, Ariga K, Ajayaghosh A (2014) Aligned 1-D Nanorods of a π-Gelator Exhibit Molecular Orientation and Excitation Energy Transport Different from Entangled Fiber Networks. J Am Chem Soc 136:8548

    Article  CAS  Google Scholar 

  4. Li T, Kalloudis M, Cardoso AZ, Adams DJ, Clegg PS (2014) Drop-Casting Hydrogels at a Liquid Interface: The Case of Hydrophobic Dipeptides. Langmuir 30:13854

    Article  CAS  Google Scholar 

  5. Zhou X, Zhang Y, Zhang F, Pillai S, Liu J, Li R, Dai B, Li B, Zhang Y (2013) Hierarchical ordering of amyloid fibrils on the mica surface. Nanoscale 5:4816

    Article  CAS  Google Scholar 

  6. Elliott JT, Woodward JT, Umarji A, Mei Y, Tona A (2007) The effect of surface chemistry on the formation of thin films of native fibrillar collagen. Biomaterials 28:576

    Article  CAS  Google Scholar 

  7. Zhang F, Du H-N, Zhang Z-X, Ji L-N, Li H-T, Tang L, Wang H-B, Fan C-H, Xu H-J, Zhang Y, Hu J, Hu H-Y, He J-H (2006) Epitaxial Growth of Peptide Nanofilaments on Inorganic Surfaces: Effects of Interfacial Hydrophobicity/Hydrophilicity. Angew Chem In Ed 45:3611; (2006) Angew Chem 118:3693

    Google Scholar 

  8. Kowalewski T, Holtzman DM (1999) In situ atomic force microscopy study of Alzheimer’s β-amyloid peptide on different substrates: New insights into mechanism of β-sheet formation. Proc Natl Acad Sci USA 96:3688

    Article  CAS  Google Scholar 

  9. Lei S, Tahara K, Adisoejoso J, Balandina T, Tobe Y, de Feyter S (2010) Towards two-dimensional nanoporous networks: crystal engineering at the solid–liquid interface. CrystEngComm 12:3369

    Article  CAS  Google Scholar 

  10. Ciesielski A, Palma C-A, Bonini M, Samorì P (2010) Towards Supramolecular Engineering of Functional Nanomaterials: Pre‐Programming Multi‐Component 2D Self‐Assembly at Solid‐Liquid Interfaces. Adv Mater 22:3506

    Article  CAS  Google Scholar 

  11. Hamley IW (2012) The Amyloid Beta Peptide: A Chemist’s Perspective. Role in Alzheimer’s and Fibrillization. Chem Rev 112:5147

    Article  CAS  Google Scholar 

  12. Chiti F, Dobson CM (2006) Protein Misfolding, Functional Amyloid, and Human Disease. Annu Rev Biochem 75:333

    Article  CAS  Google Scholar 

  13. Cecchi C, Stefani M (2013) The amyloid-cell membrane system. The interplay between the biophysical features of oligomers/fibrils and cell membrane defines amyloid toxicity. Biophys Chem 182:30

    Article  CAS  Google Scholar 

  14. Williams TL, Serpell LC (2011) Membrane and surface interactions of Alzheimer’s Aβ peptide – insights into the mechanism of cytotoxicity. FEBS J 278:3905

    Article  CAS  Google Scholar 

  15. Fantini J, Yahi N (2010) Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases. Expert Rev Mol Med 12:e27

    Article  Google Scholar 

  16. Schwartz K, Boles BR (2013) Microbial amyloids – functions and interactions within the host. Curr Opin Microbiol 16:93

    Article  CAS  Google Scholar 

  17. Kikuchi T, Mizunoe Y, Takade A, Naito S, Yoshida S (2005) Curli Fibers Are Required for Development of Biofilm Architecture in Escherichia coli K‐12 and Enhance Bacterial Adherence to Human Uroepithelial Cells. Microbiol Immunol 49:875

    Article  CAS  Google Scholar 

  18. Ratner BD, Bryant SJ (2004) Biomaterials: Where We Have Been and Where We Are Going. Annu Rev Biomed Eng 6:41

    Article  CAS  Google Scholar 

  19. Gillam JE, MacPhee CE (2013) Modelling amyloid fibril formation kinetics: mechanisms of nucleation and growth. J Phys: Condens Matter 25:373101

    CAS  Google Scholar 

  20. De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW (2009) Supramolecular Polymerization. Chem Rev 109:5687

    Article  Google Scholar 

  21. Lee C-C, Nayak A, Sethuraman A, Belfort G, McRae GJ (2007) A Three-Stage Kinetic Model of Amyloid Fibrillation. Biophys J 92:3448

    Article  CAS  Google Scholar 

  22. Hovgaard MB, Dong M, Otzen DE, Besenbacher F (2007) Quartz Crystal Microbalance Studies of Multilayer Glucagon Fibrillation at the Solid-Liquid Interface. Biophys J 93:2162

    Article  CAS  Google Scholar 

  23. Zhao D, Moore JS (2003) Nucleation–elongation: a mechanism for cooperative supramolecular polymerization. Org Biomol Chem 1:3471

    Article  CAS  Google Scholar 

  24. Malicka JM, Sandeep A, Monti F, Bandini E, Gazzano M, Ranjith C, Praveen VK, Ajayaghosh A, Armaroli N (2013) Ultrasound Stimulated Nucleation and Growth of a Dye Assembly into Extended Gel Nanostructures. Chem Eur J 19:12991

    Article  CAS  Google Scholar 

  25. Yu X, Wang Q, Lin Y, Zhao J, Zhao C, Zheng J (2012) Structure, orientation, and surface interaction of Alzheimer amyloid-β peptides on the graphite. Langmuir 28:6595

    Article  CAS  Google Scholar 

  26. Yu Y-P, Zhang S, Liu Q, Li Y-M, Wang C, Besenbacher F, Dong M (2012) 2D amyloid aggregation of human islet amyloid polypeptide at the solid–liquid interface. Soft Mater 8:1616

    Article  CAS  Google Scholar 

  27. Roach P, Farrar D, Perry CC (2006) Surface Tailoring for Controlled Protein Adsorption:  Effect of Topography at the Nanometer Scale and Chemistry. J Am Chem Soc 128:3939

    Article  CAS  Google Scholar 

  28. Lu JR, Perumal S, Hopkinson I, Webster JRP, Penfold J, Hwang W, Zhang S (2004) Interfacial Nano-structuring of Designed Peptides Regulated by Solution pH. J Am Chem Soc 126:8940

    Article  CAS  Google Scholar 

  29. Knight JD, Miranker AD (2004) Phospholipid Catalysis of Diabetic Amyloid Assembly. J Mol Biol 341:1175

    Article  CAS  Google Scholar 

  30. Yamamoto K, Sugiura H, Amemiya R, Aikawa H, An Z, Yamaguchi M, Mizukami M, Kurihara K (2011) Formation of double helix self-assembled monolayers of ethynylhelicene oligomer disulfides on gold surfaces. Tetrahedron 67:5972

    Article  CAS  Google Scholar 

  31. Zhu M, Souillac PO, Ionescu-Zanetti C, Carter SA, Fink AL (2002) Surface-catalyzed Amyloid Fibril Formation. J Biol Chem 277:50914

    Article  CAS  Google Scholar 

  32. Saito N, Shigeno M, Yamaguchi M (2012) Two‐Component Fibers/Gels and Vesicles Formed from Hetero‐Double‐Helices of Pseudoenantiomeric Ethynylhelicene Oligomers with Branched Side Chains. Chem Eur J 18:8994

    Article  CAS  Google Scholar 

  33. Mukhopadhyay RD, Ajayaghosh A (2015) Living supramolecular polymerization. Science 349:241

    Article  CAS  Google Scholar 

  34. Ogi S, Stepanenko V, Sugiyasu K, Takeuchi M, Würthner F (2015) Mechanism of Self-Assembly Process and Seeded Supramolecular Polymerization of Perylene Bisimide Organogelator. J Am Chem Soc 137:3300

    Article  CAS  Google Scholar 

  35. Ogi S, Sugiyasu K, Manna S, Samitsu S, Takeuchi M (2014) Living supramolecular polymerization realized through a biomimetic approach. Nat Chem 6:188

    Article  CAS  Google Scholar 

  36. Yamamoto K, Oyamada N, Mizutani M, An Z, Saito N, Yamaguchi M, Kasuya M, Kurihara K (2012) Two Types of Two-Component Gels Formed from Pseudoenantiomeric Ethynylhelicene Oligomers. Langmuir 28:11939

    Article  CAS  Google Scholar 

  37. Saito N, Kanie K, Matsubara M, Muramatsu A, Yamaguchi M (2015) Dynamic and Reversible Polymorphism of Self-Assembled Lyotropic Liquid Crystalline Systems Derived from Cyclic Bis(ethynylhelicene) Oligomers. J Am Chem Soc 137:6594

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsukasa Sawato .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sawato, T. (2020). Fibril Film Formation of Pseudoenantiomeric Oxymethylenehelicene Oligomers at the Liquid–Solid Interface. In: Synthesis of Optically Active Oxymethylenehelicene Oligomers and Self-assembly Phenomena at a Liquid–Solid Interface. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-3192-7_3

Download citation

Publish with us

Policies and ethics