Skip to main content

Redox Potentials of Quinones in Aqueous Solution: Relevance to Redox Potentials in Protein Environments

  • Chapter
  • First Online:
Microbial Photosynthesis

Abstract

Quinones serve as redox-active cofactors in photosynthetic reaction centers. To understand the energetics of electron transfer along the electron transfer pathways in protein environments, the redox potentials (Em) of the cofactors in water versus normal hydrogen electrode (NHE) are required. However, ubiquinone, menaquinone (phylloquinone), and plastoquinone, which are found in photosynthetic reaction centers, have insoluble hydrophobic isoprene side chains, and thus far only Em in dimethylformamide (DMF) versus saturated calomel electrode (SCE) had been reported. Recently, Em in water versus NHE was reported for the quinone species of photosynthetic reaction centers. These results confirmed that Em(Q/Q●−) in water versus NHE was more relevant to Em(Q/Q●−) in protein environments than Em(Q/Q●−) in DMF versus SCE. It has also been demonstrated that Em for one-electron reduction can also be calculated based on the lowest unoccupied molecular orbital (LUMO) level of the quinone molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brettel, K., & Leibl, W. (2001). Electron transfer in photosystem I. Biochimica et Biophysica Acta, 1507, 100–114.

    Article  CAS  Google Scholar 

  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J., A, J., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2004). Gaussian 03. Wallingford: Gaussian, Inc.

    Google Scholar 

  • Ishikita, H., & Knapp, E.-W. (2004). Variation of Ser-L223 hydrogen bonding with the QB redox state in reaction centers from Rhodobacter sphaeroides. Journal of the American Chemical Society, 126, 8059–8064.

    Article  CAS  Google Scholar 

  • Iwaki, M., & Itoh, S. (1994). Reaction of reconstituted acceptor quinone and dynamic equilibration of electron transfer in the photosystem I reaction center. Plant & Cell Physiology, 35, 983–993.

    CAS  Google Scholar 

  • Kato, Y., Nagao, R., & Noguchi, T. (2016). Redox potential of the terminal quinone electron acceptor QB in photosystem II reveals the mechanism of electron transfer regulation. Proceedings of the National Academy of Sciences of the United States of America, 113, 620–625.

    Article  CAS  Google Scholar 

  • Kishi, S., Saito, K., Kato, Y., & Ishikita, H. (2017). Redox potentials of ubiquinone, menaquinone, phylloquinone, and plastoquinone in aqueous solution. Photosynthesis Research, 134, 193–200.

    Article  CAS  Google Scholar 

  • Okamura, M. Y., Paddock, M. L., Graige, M. S., & Feher, G. (2000). Proton and electron transfer in bacterial reaction centers. Biochimica et Biophysica Acta, 1458, 148–163.

    Article  CAS  Google Scholar 

  • Prince, R. C., Dutton, P. L., & Bruce, J. M. (1983). Electrochemistry of ubiquinones: Menaquinones and plastoquinones in aprotic solvents. FEBS Letters, 160, 273–276.

    Article  CAS  Google Scholar 

  • Ptushenko, V. V., Cherepanov, D. A., Krishtalik, L. I., & Semenov, A. Y. (2008). Semi-continuum electrostatic calculations of redox potentials in photosystem I. Photosynthesis Research, 97, 55–74.

    Article  CAS  Google Scholar 

  • Rabenstein, B., Ullmann, G. M., & Knapp, E.-W. (1998). Energetics of electron-transfer and protonation reactions of the quinones in the photosynthetic reaction center of Rhodopseudomonas viridis. Biochemistry, 37, 2488–2495.

    Article  CAS  Google Scholar 

  • Robinson, H. H., & Crofts, A. R. (1984). Kinetics of proton uptake and the oxidation-reduction reactions of the quinone acceptor complex of photosystem II from pea chloroplasts. In C. Sybesma (Ed.), Advances in photosynthesis research (Vol. 1, pp. 477–480). The Hague: Martinus Nijhoff/Dr. W. Junk Publishers.

    Google Scholar 

  • Rutherford, A. W., Renger, G., Koike, H., & Inoue, Y. (1984). Thermoluminescence as a probe of photosystem II. The redox and protonation states of the secondary acceptor quinone and the O2-evolving enzyme. Biochimica et Biophysica Acta, 767, 548–556.

    Article  CAS  Google Scholar 

  • Swallow, A. J. (1982). Physical chemistry of semiquinones. In B. L. Trumpower (Ed.), Function of quinones in energy conserving systems (pp. 59–72). New York: Academic Press.

    Google Scholar 

  • Vos, M. H., & Van Gorkom, H. J. (1990). Thermodynamical and structural information on photosynthetic systems obtained from electroluminescence kinetics. Biophysical Journal, 58, 1547–1555.

    Article  CAS  Google Scholar 

  • Watanabe, T., & Kobayashi, M. (1991). Electrochemistry of chlorophylls. In H. Scheer (Ed.), Chlorophylls (pp. 287–303). Boca Raton: CRC Press.

    Google Scholar 

  • Wraight, C. A. (2004). Proton and electron transfer in the acceptor quinone complex of photosynthetic reaction centers from Rhodobacter sphaeroides. Frontiers in Bioscience, 9, 309–337.

    Article  CAS  Google Scholar 

  • Zhu, Z., & Gunner, M. R. (2005). Energetics of quinone-dependent electron and proton transfers in Rhodobacter sphaeroides photosynthetic reaction centers. Biochemistry, 44, 82–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by JST CREST (JPMJCR1656), JSPS KAKENHI (18H01186 to K.S., JP16H06560 to K.S. and H.I., and JP26105012 to H.I.), Japan Agency for Medical Research and Development (AMED), Materials Integration for engineering polymers of Cross-ministerial Strategic Innovation Promotion Program (SIP), and Interdisciplinary Computational Science Program in CCS, University of Tsukuba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ishikita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishikita, H., Saito, K. (2020). Redox Potentials of Quinones in Aqueous Solution: Relevance to Redox Potentials in Protein Environments. In: Wang, Q. (eds) Microbial Photosynthesis. Springer, Singapore. https://doi.org/10.1007/978-981-15-3110-1_5

Download citation

Publish with us

Policies and ethics