Skip to main content

Photosynthetic Improvement of Industrial Microalgae for Biomass and Biofuel Production

  • Chapter
  • First Online:
Microbial Photosynthesis

Abstract

Photosynthesis is a process of assimilating carbon dioxide into organic carbons utilizing energy from the sun, during which oxygen is generated. This process thus supports all life on earth by providing food and oxygen. More importantly, it produces biomass that is converted to fossil fuels, which is recapitulated to provide renewable and sustainable biofuels and other chemicals. Microalgae are considered as feedstocks for this purpose, since they possess efficient photosynthetic apparatus, and with their simple body plan, their photosynthetic productivities surpass any crop plants. It should also be noted that photosynthesis also provides carbons and energy for biosynthesis of other molecules, and its improvement should be considered before engineering downstream pathways. One such example would be lipid biosynthesis, and interestingly, certain types of lipids are required for improving photosynthesis, which will be discussed in this review. There have been successful attempts to improve photosynthesis in plants and the model microalgae Chlamydomonas; however, only a handful reports are available for industrial microalgae including Chlorella and Nannochloropsis. This review will introduce strategies of improving photosynthesis in the industrial systems, including light-harvesting antenna and photosynthetic pigments, followed by functional lipids relevant to photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adarme-Vega, T. C., Lim, D. K. Y., Timmins, M., Vernen, F., Li, Y., & Schenk, P. M. (2012). Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories, 11, 96–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aldridge, C., Cain, P., & Robinson, C. (2009). Protein transport in organelles: Protein transport into and across the thylakoid membrane. FEBS Journal, 276, 1177–1186.

    CAS  PubMed  Google Scholar 

  • Amin, P., Sy, D. A., Pilgrim, M. L., Parry, D. H., Nussaume, L., & Hoffman, N. E. (1999). Arabidopsis mutants lacking the 43- and 54-kilodalton subunits of the chloroplast signal recognition particle have distinct phenotypes. Plant Physiology, 121, 61–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andreou, A., Brodhun, F., & Feussner, I. (2009). Biosynthesis of oxylipins in non-mammals. Progress in Lipid Research, 48, 148–170.

    CAS  PubMed  Google Scholar 

  • Aoki, M., Sato, N., Meguro, A., & Tsuzuki, M. (2004). Differing involvement of sulfoquinovosyl diacylglycerol in photosystem II in two species of unicellular cyanobacteria. European Journal of Biochemistry, 271, 685–693.

    CAS  PubMed  Google Scholar 

  • Apt, K. E., Zaslavkaia, L., Lippmeier, J. C., Lang, M., Kilian, O., Wetherbee, R., Grossman, A. R., & Kroth, P. G. (2002). In vivo characterization of diatom multipartite plastid targeting signals. Journal of Cell Science, 115, 4061–4069.

    CAS  PubMed  Google Scholar 

  • Aronsson, H., Schöttler, M. A., Kelly, A. A., Sundqvist, C., Dörmann, P., Karim, S., & Jarvis, P. (2008). Monogalactosyldiacylglycerol deficiency in Arabidopsis affects pigment composition in the prolamellar body and impairs thylakoid membrane energization and photoprotection in leaves. Plant Physiology, 148, 580–592.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey, S., Walters, R. G., Jansson, S., & Horton, P. (2001). Acclimation of Arabidopsis thaliana to the light environment: The existence of separate low light and high light responses. Planta, 213, 794–801.

    CAS  PubMed  Google Scholar 

  • Bannai, H., Tamada, Y., Maruyama, O., Nakai, K., & Miyano, S. (2002). Extensive feature detection of N-terminal protein sorting signals. Bioinformatics, 18, 298–305.

    CAS  PubMed  Google Scholar 

  • Barrera, D. J., Rosenberg, J. N., Chiu, J. G., Chang, Y. N., Debatis, M., Ngoi, S. M., Chang, J. T., Shoemaker, C. B., Oyler, G. A., & Mayfield, S. P. (2015). Algal chloroplast produced camelid VH H antitoxins are capable of neutralizing botulinum neurotoxin. Plant Biotechnology Journal, 13, 117–124.

    CAS  PubMed  Google Scholar 

  • Batyrova, K., & Hallenbeck, P. C. (2017). Hydrogen production by a Chlamydomonas reinhardtii strain with inducible expression of photosystem II. International Journal of Molecular Sciences, 18(3), 647.

    PubMed Central  Google Scholar 

  • Beckmann, J., Lehr, F., Finazzi, G., Hankamer, B., Posten, C., Wobbe, L., & Kruse, O. (2009a). Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. Journal of Biotechnology, 142, 70–77.

    CAS  PubMed  Google Scholar 

  • Beckmann, J., Lehr, F., Finazzi, G., Hankamer, B., Posten, C., Wobbe, L., & Kruse, O. (2009b). Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. Journal of Biotechnology, 142, 70–77.

    CAS  PubMed  Google Scholar 

  • Bellafiore, S., Ferris, P., Naver, H., Gohre, V., & Rochiax, J. D. (2002). Loss of Albino3 leads to the specific depletion of the light-harvesting system. Plant Cell, 14, 2303–2314.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benemann, J. R. (1989). The future of microalgal biotechnology. Algal and Cyanobacterial Biotechnology, 317–337.

    Google Scholar 

  • Biswal, A. K., Pattanayak, G. K., Pandey, S. S., Leelavathi, S., Reddy, V. S., Govindjee, & Tripathy, B. C. (2012). Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco. Plant Physiology, 159, 433–449.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bock, R. (2014). Genetic engineering of the chloroplast: Novel tools and new applications. Current Opinion in Biotechnology, 26, 7–13.

    CAS  PubMed  Google Scholar 

  • Bujaldon, S., Kodama, N., Rappaport, F., Subramanyam, R., DE Vitry, C., Takahashi, Y., & Wollman, F. A. (2017). Functional accumulation of antenna proteins in chlorophyll b-less mutants of Chlamydomonas reinhardtii. Molecular Plant, 10, 115–130.

    CAS  PubMed  Google Scholar 

  • Cazzaniga, S., Dall’osto, L., Szaub, J., Scibilia, L., Ballottari, M., Purton, S., & Bassi, R. (2014). Domestication of the green alga Chlorella sorokiniana: Reduction of antenna size improves light-use efficiency in a photobioreactor. Biotechnology for Biofuels, 7, 157.

    PubMed  PubMed Central  Google Scholar 

  • Dall’osto, L., Bressan, M., & Bassi, R. (2015). Biogenesis of light harvesting proteins. Biochimica et Biophysica Acta, 1847, 861–871.

    PubMed  Google Scholar 

  • Day, P. M., & Theg, S. M. (2018). Evolution of protein transport to the chloroplast envelope membranes. Photosynthesis Research, 138, 315–326.

    CAS  PubMed  Google Scholar 

  • Dehigaspitiya, P., Milham, P., Ash, G. J., Arun-Chinnappa, K., Gamage, D., Martin, A., Nagasaka, S., & Seneweera, S. (2019). Exploring natural variation of photosynthesis in a site-specific manner: Evolution, progress, and prospects. Planta, 250, 1033–1050.

    CAS  PubMed  Google Scholar 

  • Domonkos, I., Malec, P., Sallai, A., Kovács, L., Itoh, K., Shen, G., Ughy, B., Bogos, B., Sakurai, I., Kis, M., Strzalka, K., Wada, H., Itoh, S., Farkas, T., & Gombos, Z. (2004). Phosphatidylglycerol is essential for oligomerization of photosystem I reaction center. Plant Physiology, 134, 1471–1478.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dreesen, I. A., Charpin-El Hamri, G., & Fussenegger, M. (2010). Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. Journal of Biotechnology, 145, 273–280.

    CAS  PubMed  Google Scholar 

  • Droppa, M., Horváth, G., Hideg, É., & Farkas, T. J. P. R. (1995). The role of phospholipids in regulating photosynthetic electron transport activities: Treatment of thylakoids with phospholipase C. Photosynthesis Research, 46, 287–293.

    CAS  PubMed  Google Scholar 

  • Dubertret, G., Mirshahi, A., Mirshahi, M., Gerard-Hirne, C., & Trémolieres, A. (1994). Evidence from in vivo manipulations of lipid composition in mutants that the Δ3-trans-hexadecenoic acid-containing ohosphatidylglycerol is involved in the biogenesis of the light-harvesting chlorophyll a/b-protein complex of Chlamydomonas reinhardtii. European Journal of Biochemistry, 226, 473–482.

    CAS  PubMed  Google Scholar 

  • Durrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42, 185–209.

    Google Scholar 

  • Eggink, L. L., Lobrutto, R., Brune, D. C., Brusslan, J., Yamasato, A., Tanaka, A., & Hoober, J. K. (2004). Synthesis of chlorophyll b: Localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit. BMC Plant Biology, 4, 5.

    PubMed  PubMed Central  Google Scholar 

  • EL Maanni, A., Dubertret, G., Delrieu, M.-J., Roche, O., & Trémolières, A. (1998). Mutants of Chlamydomonas reinhardtii affected in phosphatidylglycerol metabolism and thylakoid biogenesis. Plant Physiology and Biochemistry, 36, 609–619.

    Google Scholar 

  • Elrad, D., Niyogi, K. K., & Grossman, A. R. (2002). A major light-harvesting polypeptide of photosystem II functions in thermal dissipation. The Plant Cell Online, 14, 1801–1816.

    CAS  Google Scholar 

  • Emanuelsson, O., Nielsen, H., & VON Heijne, G. (1999). ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science, 8, 978–984.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emanuelsson, O., Nielsen, H., Brunak, S., & VON Heijne, G. (2000). Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. Journal of Molecular Biology, 300, 1005–1016.

    CAS  PubMed  Google Scholar 

  • Endo, K., Mizusawa, N., Shen, J.-R., Yamada, M., Tomo, T., Komatsu, H., Kobayashi, M., Kobayashi, K., & Wada, H. J. P. R. (2015). Site-directed mutagenesis of amino acid residues of D1 protein interacting with phosphatidylglycerol affects the function of plastoquinone QB in photosystem II. Photosynthesis Research, 126, 385–397.

    Google Scholar 

  • Essigmann, B., Güler, S., Narang, R. A., Linke, D., & Benning, C. (1998). Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of Americ, 95, 1950–1955.

    Google Scholar 

  • Facchinelli, F., & Weber, A. P. M. (2011). The metabolite transporters of the plastid envelope: An update. Frontiers in Plant Science, 2, 50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer, E. E., Alméras, E., & Krishnamurthy, V. (2003). Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Current Opinion in Plant Biology, 6, 372–378.

    CAS  PubMed  Google Scholar 

  • Frank, H. A., & Cogdell, R. J. (1996). Carotenoids in Photosynthesis. Photochemistry and Photobiology, 63, 257–264.

    CAS  PubMed  Google Scholar 

  • Gan, Q., Jiang, J., Han, X., Wang, S., & Lu, Y. (2018). Engineering the chloroplast genome of oleaginous marine microalga Nannochloropsis oceanica. Frontiers in Plant Science, 9, 439.

    PubMed  PubMed Central  Google Scholar 

  • Gee, C. W., & Niyogi, K. K. (2017). The carbonic anhydrase CAH1 is an essential component of the carbon-concentrating mechanism in Nannochloropsis oceanica. Proceedings of the National Academy of Sciences of the United States of America, 114, 4537–4542.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gohre, V., Ossenbuhl, F., Crevecoeur, M., Eichacker, L. A., & Rochaix, J. D. (2006). One of two Alb3 proteins is essential for the assembly of the photosystems and for cell survival in Chlamydomonas. Plant Cell, 18, 1454–1466.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gombos, Z., Várkonyi, Z., Hagio, M., Iwaki, M., Kovács, L., Masamoto, K., Itoh, S., & Wada, H. (2002). Phosphatidylglycerol requirement for the function of electron acceptor Plastoquinone QB in the photosystem II reaction center. Biochemistry, 41, 3796–3802.

    CAS  PubMed  Google Scholar 

  • Grossman, A. R., Bhaya, D., Apt, K. E., & Kehoe, D. M. (1995). Light-harvesting complexes in oxygenic photosynthesis: Diversity, control, and evolution. Annual Review of Genetics, 29, 231–288.

    CAS  PubMed  Google Scholar 

  • Gruber, A., Vugrinec, S., Hempel, F., Gould, S. B., Maier, U. G., & Kroth, P. G. (2007). Protein targeting into complex diatom plastids: Functional characterisation of a specific targeting motif. Plant Molecular Biology, 64, 519–530.

    CAS  PubMed  Google Scholar 

  • Gschloessl, B., Guermeur, Y., & Cock, J. M. (2008). HECTAR: A method to predict subcellular targeting in heterokonts. BMC Bioinformatics, 9, 393.

    PubMed  PubMed Central  Google Scholar 

  • Guler, S., Seeliger, A., Hartel, H., Renger, G., & Benning, C. (1996). A null mutant of Synechococcus sp. PCC7942 deficient in the sulfolipid sulfoquinovosyl diacylglycerol. The Journal of Biological Chemistry, 271, 7501–7507.

    CAS  PubMed  Google Scholar 

  • Guo, J., Zhang, Z., Bi, Y., Yang, W., Xu, Y., & Zhang, L. (2005). Decreased stability of photosystem I in dgd1 mutant of Arabidopsis thaliana. FEBS Letters, 579, 3619–3624.

    Google Scholar 

  • Guschina, I. A., & Harwood, J. L. (2013). Algal lipids and their metabolism. In M. A. Borowitzka & N. R. Moheimani (Eds.), Algae for biofuels and energy. Dordrecht: Springer.

    Google Scholar 

  • Hagen, C., Braune, W., & Greulich, F. (1993). Functional aspects of secondary carotenoids in Haematococcus lacustris [Girod] Rostafinski (Volvocales) IV. Protection from photodynamic damage. Journal of Photochemistry and Photobiology B: Biology, 20, 153–160.

    CAS  Google Scholar 

  • Hagen, C., Braune, W., & Björn, L.O. (1994). Functional aspects of secondary carotenoids in Haematococcus lacustris (volvocales). III. Action as A “sunshade” 1. Journal of Phycology, 30, 241–248.

    Google Scholar 

  • Hagio, M., Gombos, Z., Várkonyi, Z., Masamoto, K., Sato, N., Tsuzuki, M., & Wada, H. (2000). Direct evidence for requirement of phosphatidylglycerol in photosystem II of photosynthesis. American Society of Plant Physiologists, 124, 795–804.

    CAS  Google Scholar 

  • Hartel, H., Lokstein, H., Dormann, P., Grimm, B., & Benning, C. (1997). Changes in the composition of the photosynthetic apparatus in the Galactolipid-deficient dgd1 mutant of Arabidopsis thaliana., Science, 115, 1175–1184.

    Google Scholar 

  • Havaux, M. (2014). Carotenoid oxidation products as stress signals in plants. The Plant Journal, 79, 597–606.

    CAS  PubMed  Google Scholar 

  • Ho, M. Y., Shen, G. Z., Canniffe, D. P., Zhao, C., & Bryant, D. A. (2016). Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science, 353(6302), aaf9178.

    PubMed  Google Scholar 

  • Hölzl, G., Witt, S., Kelly, A. A., Zähringer, U., Warnecke, D., Dörmann, P., & Heinz, E. (2006). Functional differences between galactolipids and glucolipids revealed in photosynthesis of higher plants. Proceedings of the National Academy of Sciences of the United States of America, 103, 7512–7517.

    Google Scholar 

  • Hölzl, G., Witt, S., Gaude, N., Melzer, M., Schöttler, M. A., & Dörmann, P. (2009). The role of Diglycosyl lipids in photosynthesis and membrane lipid homeostasis in Arabidopsis. Plant Physiology, 150, 1147–1159.

    Google Scholar 

  • Huang, J., Hack, E., Thornburg, R. W., & Myers, A. M. (1990). A yeast mitochondrial leader peptide functions in vivo as a dual targeting signal for both chloroplasts and mitochondria. Plant Cell, 2, 1249–1260.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurt, E. C., Soltanifar, N., Goldschmidt-Clermont, M., Rochaix, J. D., & Schatz, G. (1986). The cleavable pre-sequence of an imported chloroplast protein directs attached polypeptides into yeast mitochondria. The EMBO Journal, 5, 1343–1350.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang, H. J., Kim, Y. T., Kang, N. S., & Han, J. W. (2018). A simple method for removal of the Chlamydomonas reinhardtii cell wall using a commercially available Subtilisin (Alcalase). Journal of Molecular Microbiology and Biotechnology, 28, 169–178.

    CAS  PubMed  Google Scholar 

  • Itoh, S., Kozuki, T., Nishida, K., Fukushima, Y., Yamakawa, H., Domonkos, I., Laczkó-Dobos, H., Kis, M., Ughy, B., & Gombos, Z. (2012). Two functional sites of phosphatidylglycerol for regulation of reaction of plastoquinone QB in photosystem II. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1817, 287–297.

    CAS  Google Scholar 

  • Ivanov, A. G., Hendrickson, L., Krol, M., Selstam, E., Öquist, G., Hurry, V., & Huner, N. P. A. (2006). Digalactosyl-diacylglycerol deficiency impairs the capacity for photosynthetic intersystem Electron transport and state transitions in Arabidopsis thaliana due to photosystem I acceptor-side limitations. Plant and Cell Physiology, 47, 1146–1157.

    CAS  PubMed  Google Scholar 

  • Jahns, P., Latowski, D., & Strzalka, K. (2009). Mechanism and regulation of the violaxanthin cycle: The role of antenna proteins and membrane lipids. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1787, 3–14.

    CAS  Google Scholar 

  • Jeong, J., Baek, K., Kirst, H., Melis, A., & Jin, E. (2017). Loss of CpSRP54 function leads to a truncated light-harvesting antenna size in Chlamydomonas reinhardtii. Biochimica et Biophysica Acta-Bioenergetics, 1858, 45–55.

    CAS  PubMed  Google Scholar 

  • Jia, T., Ito, H., & Tanaka, A. (2016). Simultaneous regulation of antenna size and photosystem I/II stoichiometry in Arabidopsis thaliana. Planta, 244, 1041–1053.

    CAS  PubMed  Google Scholar 

  • Jin, E. S., Polle, J. E. W., & Melis, A. (2001). Involvement of zeaxanthin and of the Cbr protein in the repair of photosystem II from photoinhibition in the green alga Dunaliella salina. Biochimica et Biophysica Acta-Bioenergetics, 1506, 244–259.

    CAS  Google Scholar 

  • Jones, C. S., Luong, T., Hannon, M., Tran, M., Gregory, J. A., Shen, Z., Briggs, S. P., & Mayfield, S. P. (2013). Heterologous expression of the C-terminal antigenic domain of the malaria vaccine candidate Pfs48/45 in the green algae Chlamydomonas reinhardtii. Applied Microbiology and Biotechnology, 97, 1987–1995.

    CAS  PubMed  Google Scholar 

  • Jordan, B. R., Chow, W.-S., & Baker, A. J. (1983). The role of phospholipids in the molecular organisation of pea chloroplast membranes. Effect of phospholipid depletion on photosynthetic activities. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 725, 77–86.

    CAS  Google Scholar 

  • Kirst, H., & Melis, A. (2013). The chloroplast signal recognition particle (CpSRP) pathway as a tool to minimize chlorophyll antenna size and maximize photosynthetic productivity. Biotechnology Advances, 32, 66–72.

    PubMed  Google Scholar 

  • Kirst, H., & Melis, A. (2014). The chloroplast signal recognition particle (CpSRP) pathway as a tool to minimize chlorophyll antenna size and maximize photosynthetic productivity. Biotechnology Advances, 32, 66–72.

    CAS  PubMed  Google Scholar 

  • Kirst, H., Garcia-Cerdan, J. G., Zurbriggen, A., & Melis, A. (2012a). Assembly of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii requires expression of the TLA2-CpFTSY gene. Plant Physiology, 158, 930–945.

    CAS  PubMed  Google Scholar 

  • Kirst, H., Garcia-Cerdan, J. G., Zurbriggen, A., Ruehle, T., & Melis, A. (2012b). Truncated photosystem chlorophyll antenna size in the green microalga Chlamydomonas reinhardtii upon deletion of the TLA3-CpSRP43 gene. Plant Physiology, 160, 2251–2260.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klimyuk, V. I., Persello-Cartieaux, F., Havaux, M., Contard-David, P., Schuenemann, D., Meiherhoff, K., Gouet, P., Jones, J. D., Hoffman, N. E., & Nussaume, L. (1999). A chromodomain protein encoded by the Arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell, 11, 87–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, K. (2016). Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development. Journal of Plant Research, 129, 565–580.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, M., & Sakamoto, Y. J. B. L. (1999). Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis. Biotechnology Letters, 21, 265–269.

    CAS  Google Scholar 

  • Kobayashi, K., Narise, T., Sonoike, K., Hashimoto, H., Sato, N., Kondo, M., Nishimura, M., Sato, M., Toyooka, K., Sugimoto, K., Wada, H., Masuda, T., & Ohta, H. (2013). Role of galactolipid biosynthesis in coordinated development of photosynthetic complexes and thylakoid membranes during chloroplast biogenesis in Arabidopsis. Biotechnology Letters, 73, 250–261.

    CAS  Google Scholar 

  • Kobayashi, K., Fujii, S., Sasaki, D., Baba, S., Ohta, H., Masuda, T., & Wada, H. (2014). Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in Arabidopsis. Frontiers in Plant Science, 5, 272.

    PubMed  PubMed Central  Google Scholar 

  • Kobayashi, K., Fujii, S., Sato, M., Toyooka, K., & Wada, H. J. P. C. R. (2015). Specific role of phosphatidylglycerol and functional overlaps with other thylakoid lipids in Arabidopsis chloroplast biogenesis. Plant Cell Reports, 34, 631–642.

    CAS  PubMed  Google Scholar 

  • Kobayashi, K., Endo, K., & Wada, H. (2016). Multiple Impacts of Loss of Plastidic Phosphatidylglycerol Biosynthesis on Photosynthesis during Seedling Growth of Arabidopsis. Frontiers in Plant Science, 7.

    Google Scholar 

  • Koh, H. G., Kang, N. K., Jeon, S., Shin, S.-E., Jeong, B.-R., & Chang, Y. K. (2019a). Heterologous synthesis of chlorophyll b in Nannochloropsis salina enhances growth and lipid production by increasing photosynthetic efficiency. Biotechnology for Biofuels, 12, 122.

    PubMed  PubMed Central  Google Scholar 

  • Koh, H. G., Kang, N. K., Jeon, S., Shin, S. E., Jeong, B. R., & Chang, Y. K. (2019b). Heterologous synthesis of chlorophyll b in Nannochloropsis Salina enhances growth and lipid production by increasing photosynthetic efficiency. Biotechnology for Biofuels, 12, 122.

    PubMed  PubMed Central  Google Scholar 

  • Koh, H. G., Kang, N. K., Jeon, S., Shin, S. E., Jeong, B. R., & Chang, Y. K. (2019c). Heterologous synthesis of chlorophyll b in Nannochloropsis Salina enhances growth and lipid production by increasing photosynthetic efficiency. Biotechnology for Biofuels, 12, 122.

    PubMed  PubMed Central  Google Scholar 

  • Kromdijk, J., Glowacka, K., Leonelli, L., Gabilly, S. T., Iwai, M., Niyogi, K. K., & Long, S. P. (2016). Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science, 354, 857–861.

    CAS  Google Scholar 

  • Kunugi, M., Takabayashi, A., & Tanaka, A. (2013). Evolutionary changes in Chlorophyllide a Oxygenase (CAO) structure contribute to the acquisition of a new light-harvesting complex in Micromonas. Journal of Biological Chemistry, 288, 19330–19341.

    CAS  PubMed  Google Scholar 

  • Kwon, Y. M., Kim, K. W., Choi, T. Y., Kim, S. Y., & Kim, J. Y. H. (2018). Manipulation of the microalgal chloroplast by genetic engineering for biotechnological utilization as a green biofactory. World Journal of Microbiology and Biotechnology, 34, 183.

    PubMed  Google Scholar 

  • Lang, M., Apt, K. E., & Kroth, P. G. (1998). Protein transport into "complex" diatom plastids utilizes two different targeting signals. Journal of Biological Chemistry, 273, 30973–30978.

    CAS  PubMed  Google Scholar 

  • Levine, R. P., & Goodenough, U. W. (1970). The genetics of photosynthesis and of the chloroplast in Chlamydomonas reinhardi. Annual Review of Genetics, 4, 397–408.

    CAS  PubMed  Google Scholar 

  • Li, X., Zhang, R., Patena, W., Gang, S. S., Blum, S. R., Ivanova, N., Yue, R., Robertson, J. M., Lefebvre, P. A., Fitz-Gibbon, S. T., Grossman, A. R., & Jonikas, M. C. (2016). An indexed, mapped mutant library enables reverse genetics studies of biological processes in Chlamydomonas reinhardtii. Plant Cell, 28, 367–387.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lien, S., & San Pietro, A. (1976). Inquiry into biophotolysis of water to produce hydrogen. Indiana University, Bloomington (USA). Department of Plant Sciences.

    Google Scholar 

  • Liu, X. Y., Ouyang, L. L., & Zhou, Z. G. (2016). Phospholipid: Diacylglycerol acyltransferase contributes to the conversion of membrane lipids into triacylglycerol in Myrmecia incisa during the nitrogen starvation stress. Scientific Reports, 6.

    Google Scholar 

  • Mackinder, I. C. M. (2018). The Chlamydomonas CO2-concentrating mechanism and its potential for engineering photosynthesis in plants. The New Phytologist, 217, 54–61.

    CAS  PubMed  Google Scholar 

  • Madi, L., Wang, X., Kobiler, I., Lichter, A., & Prusky, D. (2003). Stress on avocado fruits regulates Δ9-stearoyl ACP desaturase expression, fatty acid composition, antifungal diene level and resistance to Colletotrichum gloeosporioides attack. Physiological and Molecular Plant Pathology, 62, 277–283.

    CAS  Google Scholar 

  • Masuda, T., Tanaka, A., & Melis, A. (2003a). Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression. Plant Molecular Biology, 51, 757–771.

    CAS  PubMed  Google Scholar 

  • Masuda, T., Tanaka, A., & Melis, A. (2003b). Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression. Plant Molecular Biology, 51, 757–771.

    CAS  PubMed  Google Scholar 

  • Mayfield, S. P., Franklin, S. E., & Lerner, R. A. (2003). Expression and assembly of a fully active antibody in algae. Proceedings of the National Academy of Sciences of the United States of America, 100, 438–442.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melis, A. (2009). Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. Plant Science, 177, 272–280.

    CAS  Google Scholar 

  • Melis, A., Neidhardt, J., & Benemann, J. R. (1998). Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. Journal of Applied Phycology, 10, 515–525.

    Google Scholar 

  • Mezzomo, N., & Ferreira, S. (2016). Carotenoids functionality. Sources, and Processing by Supercritical Technology: A Review, 2090-9063(2016), 1–16.

    Google Scholar 

  • Minoda, A., Sato, N., Nozaki, H., Okada, K., Takahashi, H., Sonoike, K., & Tsuzuki, M. (2002). Role of sulfoquinovosyl diacylglycerol for the maintenance of photosystem II in Chlamydomonas reinhardtii. European Journal of Biochemistry, 269, 2353–2358.

    CAS  PubMed  Google Scholar 

  • Minoda, A., Sonoike, K., Okada, K., Sato, N., & Tsuzuki, M. (2003). Decrease in the efficiency of the electron donation to tyrosine Z of photosystem II in an SQDG-deficient mutant of Chlamydomonas. FEBS Letters, 553, 109–112.

    CAS  PubMed  Google Scholar 

  • Mitra, M., Kirst, H., Dewez, D., & Melis, A. (2012). Modulation of the light-harvesting chlorophyll antenna size in Chlamydomonas reinhardtii by TLA1 gene over-expression and RNA interference. Philosophical Transactions of the Royal Society B-Biological Sciences, 367, 3430–3443.

    CAS  PubMed Central  Google Scholar 

  • Mizusawa, N., Sakata, S., Sakurai, I., Sato, N., & Wada, H. (2009a). Involvement of digalactosyldiacylglycerol in cellular thermotolerance in Synechocystis sp. PCC 6803. Archives of Microbiology, 191, 595–601.

    CAS  PubMed  Google Scholar 

  • Mizusawa, N., Sakurai, I., Sato, N., & Wada, H. (2009b). Lack of digalactosyldiacylglycerol increases the sensitivity of Synechocystis sp. PCC 6803 to high light stress. FEBS Letters, 583, 718–722.

    CAS  PubMed  Google Scholar 

  • Moog, D., Rensing, S. A., Archibald, J. M., Maier, U. G., & Ullrich, K. K. (2015a). Localization and evolution of putative triose phosphate translocators in the diatom Phaeodactylum tricornutum. Genome Biology and Evolution, 7, 2955–2969.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moog, D., Stork, S., Reislohner, S., Grosche, C., & Maier, U. G. (2015b). In vivo localization studies in the stramenopile alga Nannochloropsis oceanica. Protist, 166, 161–171.

    CAS  PubMed  Google Scholar 

  • Muller, P., Li, X. P., & Niyogi, K. K. (2001). Non-photochemical quenching. A response to excess light energy. Plant Physiology, 125, 1558–1566.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mussgnug, J. H., Wobbe, L., Elles, I., Claus, C., Hamilton, M., Fink, A., Kahmann, U., Kapazoglou, A., Mullineaux, C. W., Hippler, M., Nickelsen, J., Nixon, P. J., & Kruse, O. (2005). NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii. Plant Cell, 17, 3409–3421.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mussgnug, J. H., Thomas-Hall, S., Rupprecht, J., Foo, A., Klassen, V., Mcdowall, A., Schenk, P. M., Kruse, O., & Hankamer, B. (2007). Engineering photosynthetic light capture: Impacts on improved solar energy to biomass conversion. Plant Biotechnology Journal, 5, 802–814.

    CAS  PubMed  Google Scholar 

  • Nakajima, Y., & Ueda, R. (1997). Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments. Journal of Applied Phycology, 9, 503–510.

    CAS  Google Scholar 

  • Nakajima, Y., Tsuzuki, M., & Ueda, R. (2001). Improved productivity by reduction of the content of light-harvesting pigment in Chlamydomonas perigranulata. Journal of Applied Phycology, 13, 95–101.

    CAS  Google Scholar 

  • Noda, J., Muhlroth, A., Bucinska, L., Dean, J., Bones, A. M., & Sobotka, R. (2017). Tools for biotechnological studies of the freshwater alga Nannochloropsis limnetica: Antibiotic resistance and protoplast production. Journal of Applied Phycology, 29, 853–863.

    CAS  Google Scholar 

  • Ongena, M., Duby, F., Rossignol, F., Fauconnier, M. L., Dommes, J., & Thonart, P. (2004). Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain. Molecular Plant-Microbe Interactions, 17, 1009–1018.

    CAS  PubMed  Google Scholar 

  • Ossenbuhl, F., Gohre, V., Meurer, J., Krieger-Liszkay, A., Rochaix, J. D., & Eichacker, L. A. (2004). Efficient assembly of photosystem II in Chlamydomonas reinhardtii requires Alb3.1p, a homolog of Arabidopsis ALBINO3. Plant Cell, 16, 1790–1800.

    PubMed  PubMed Central  Google Scholar 

  • Perin, G., Bellan, A., Segalla, A., Meneghesso, A., Alboresi, A., & Morosinotto, T. (2015). Generation of random mutants to improve light-use efficiency of Nannochloropsis gaditana cultures for biofuel production. Biotechnology for Biofuels, 8, 161.

    PubMed  PubMed Central  Google Scholar 

  • Perozeni, F., Stella, G. R., & Ballottari, M. (2018). LHCSR expression under HSP70/RBCS2 promoter as a strategy to increase productivity in microalgae. International Journal of Molecular Sciences, 19, 155.

    PubMed Central  Google Scholar 

  • Perrine, Z., Negi, S., & Sayre, R. T. (2012). Optimization of photosynthetic light energy utilization by microalgae. Algal Research-Biomass Biofuels and Bioproducts, 1, 134–142.

    Google Scholar 

  • Pineau, B., Girard-Bascou, J., Eberhard, S., Choquet, Y., Trémolières, A., Gérard-Hirne, C., Bennardo-Connan, A., Decottignies, P., Gillet, S., & Wollman, F.-A. (2004). A single mutation that causes phosphatidylglycerol deficiency impairs synthesis of photosystem II cores in Chlamydomonas reinhardtii. European Journal of Biochemistry, 271, 329–338.

    CAS  PubMed  Google Scholar 

  • Polle, J. E. W., Kanakagiri, S., Jin, E., Masuda, T., & Melis, A. (2002). Truncated chlorophyll antenna size of the photosystems - a practical method to improve microalgal productivity and hydrogen production in mass culture. International Journal of Hydrogen Energy, 27, 1257–1264.

    CAS  Google Scholar 

  • Polle, J. E. W., Kanakagiri, S. D., & Melis, A. (2003). tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta, 217, 49–59.

    CAS  PubMed  Google Scholar 

  • Prabandono, K., & Amin, S. (2015). Chapter 10 – Biofuel production from microalgae. In S.-K. Kim (Ed.), Handbook of marine microalgae. Boston: Academic Press.

    Google Scholar 

  • Prof, D., & Gupta, C. (2014). Carotenoids: Chemistry and health benefits. Phytochemicals of Nutraceutical Importance, 181–195.

    Google Scholar 

  • Ramel, F., Birtic, S., Cuiné, S., Triantaphylidès, C., Ravanat, J.-L., & Havaux, M. (2012). Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiology, 158, 1267–1278.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasala, B. A., Muto, M., Lee, P. A., Jager, M., Cardoso, R. M., Behnke, C. A., Kirk, P., Hokanson, C. A., Crea, R., Mendez, M., & Mayfield, S. P. (2010). Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnology Journal, 8, 719–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasala, B. A., Chao, S. S., Pier, M., Barrera, D. J., & Mayfield, S. P. (2014). Enhanced genetic tools for engineering multigene traits into green algae. Plos One, 9, e94028.

    PubMed  PubMed Central  Google Scholar 

  • Reifarth, F., Christen, G., Seeliger, A. G., Dörmann, P., Benning, C., & Renger, G. (1997). Modification of the water oxidizing complex in leaves of the dgd1 mutant of Arabidopsis thaliana deficient in the Galactolipid Digalactosyldiacylglycerol. Biochemistry, 36, 11769–11776.

    CAS  PubMed  Google Scholar 

  • Sakuraba, Y., Balazadeh, S., Tanaka, R., Mueller-Roeber, B., & Tanaka, A. (2012). Overproduction of Chl b retards senescence through transcriptional reprogramming in Arabidopsis. Plant and Cell Physiology, 53, 505–517.

    CAS  PubMed  Google Scholar 

  • Sakurai, I., Hagio, M., Gombos, Z., Tyystjärvi, T., Paakkarinen, V., Aro, E.-M., & Wada, H. (2003). Requirement of phosphatidylglycerol for maintenance of photosynthetic machinery. Plant Physiology, 133, 1376–1384.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai, I., Mizusawa, N., Ohashi, S., Kobayashi, M., & Wada, H. (2007a). Effects of the lack of phosphatidylglycerol on the donor side of photosystem II. Plant Physiology, 144, 1336–1346.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai, I., Mizusawa, N., Wada, H., & Sato, N. (2007b). Digalactosyldiacylglycerol is required for stabilization of the oxygen-evolving complex in photosystem II. Plant Physiology -Rockville Pike Bethesda, 145, 1361–1370.

    CAS  Google Scholar 

  • Sato, N., Sonoike, K., Tsuzuk, M., & Kawaguchi, A. (1995). Impaired photosystem II in a mutant of chlamydomonas reinhardtii. Defective in Sulfoquinovosyl Diacylglycerol, 234, 16–23.

    CAS  Google Scholar 

  • Satoh, S., Ikeuchi, M., Mimuro, M., & Tanaka, A. (2001). Chlorophyll b expressed in cyanobacteria functions as a light harvesting antenna in photosystem I through flexibility of the proteins. Journal of Biological Chemistry, 276, 4293–4297.

    CAS  PubMed  Google Scholar 

  • Schaller, S., Latowski, D., Jemioła-Rzemińska, M., Wilhelm, C., Strzałka, K., & Goss, R. (2010). The main thylakoid membrane lipid monogalactosyldiacylglycerol (MGDG) promotes the de-epoxidation of violaxanthin associated with the light-harvesting complex of photosystem II (LHCII). Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1797, 414–424.

    CAS  Google Scholar 

  • Schaller, S., Latowski, D., Jemioła-Rzemińska, M., Dawood, A., Wilhelm, C., Strzałka, K., & Goss, R. (2011). Regulation of LHCII aggregation by different thylakoid membrane lipids. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1807, 326–335.

    CAS  Google Scholar 

  • Scheer, H. (2003). Light harvesting antenna in photosynthesis. Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O., & Hankamer, B. (2008). Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Research, 1, 20–43.

    Google Scholar 

  • Shen, G., Canniffe, D. P., Ho, M. Y., Kurashov, V., Van Der Est, A., Golbeck, J. H., & Bryant, D. A. (2019). Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002. Photosynthesis Research, 140, 77–92.

    CAS  PubMed  Google Scholar 

  • Shin, S. E., Lim, J. M., Koh, H. G., Kim, E. K., Kang, N. K., Jeon, S., Kwon, S., Shin, W. S., Lee, B., Hwangbo, K., Kim, J., Ye, S. H., Yun, J. Y., Seo, H., Oh, H. M., Kim, K. J., Kim, J. S., Jeong, W. J., Chang, Y. K., & Jeong, B.-R. (2016a). CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Scientific Reports, 6, 27810.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin, S. E., Lim, J. M., Koh, H. G., Kim, E. K., Kang, N. K., Jeon, S., Kwon, S., Shin, W. S., Lee, B., Hwangbo, K., Kim, J., Ye, S. H., Yun, J. Y., Seo, H., Oh, H. M., Kim, K. J., Kim, J. S., Jeong, W. J., Chang, Y. K., & Jeong, B. R. (2016b). CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Scientific Reports, 6.

    Google Scholar 

  • Shin, W.-S., Lee, B., Jeong, B.-R., Chang, Y. K., & Kwon, J.-H. (2016c). Truncated light-harvesting chlorophyll antenna size in Chlorella vulgaris improves biomass productivity. Journal of Applied Phycology, 28, 3193–3202.

    CAS  Google Scholar 

  • Shin, W. S., Lee, B., Jeong, B. R., Chang, Y. K., & Kwon, J. H. (2016d). Truncated light-harvesting chlorophyll antenna size in Chlorella vulgaris improves biomass productivity. Journal of Applied Phycology, 28, 3193–3202.

    CAS  Google Scholar 

  • Shin, W.-S., Lee, B., Kang, N. K., Kim, Y.-U., Jeong, W.-J., Kwon, J.-H., Jeong, B.-R., & Chang, Y. K. (2017a). Complementation of a mutation in CpSRP43 causing partial truncation of light-harvesting chlorophyll antenna in Chlorella vulgaris. Scientific Reports, 7, 17929.

    PubMed  PubMed Central  Google Scholar 

  • Shin, W. S., Lee, B., Kang, N. K., Kim, Y. U., Jeong, W. J., Kwon, J. H., Jeong, B. R., & Chang, Y. K. (2017b). Complementation of a mutation in CpSRP43 causing partial truncation of light-harvesting chlorophyll antenna in Chlorella vulgaris. Scientific Reports, 7, 17929.

    PubMed  PubMed Central  Google Scholar 

  • Small, I., Peeters, N., Legeai, F., & Lurin, C. (2004). Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics, 4, 1581–1590.

    CAS  PubMed  Google Scholar 

  • Sperschneider, J., Catanzariti, A. M., Deboer, K., Petre, B., Gardiner, D. M., Singh, K. B., Dodds, P. N., & Taylor, J. M. (2017). LOCALIZER: Subcellular localization prediction of both plant and effector proteins in the plant cell. Scientific Reports, 7, 44598.

    PubMed  PubMed Central  Google Scholar 

  • Steffen, R., Kelly, A. A., Huyer, J., Dörmann, P., & Renger, G. (2005). Investigations on the reaction pattern of photosystem II in leaves from Arabidopsis thaliana wild type plants and mutants with genetically modified lipid content. Biochemistry, 44, 3134–3142.

    CAS  PubMed  Google Scholar 

  • Stephenson, P. G., Moore, C. M., Terry, M. J., Zubkov, M. V., & Bibby, T. S. (2011). Improving photosynthesis for algal biofuels: Toward a green revolution. Trends in Biotechnology, 29, 615–623.

    CAS  PubMed  Google Scholar 

  • Takaichi, S., Inoue, K., Akaike, M., Kobayashi, M., Oh-Oka, H., & Madigan, M. T. (1997). The major carotenoid in all known species of heliobacteria is the C30 carotenoid 4,4′-diaponeurosporene, not neurosporene. Archives of Microbiology, 168, 277–281.

    CAS  PubMed  Google Scholar 

  • Tanaka, A., Ito, H., Tanaka, R., Tanaka, N. K., Yoshida, K., & Okada, K. (1998a). Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proceedings of the National Academy of Sciences of the United States of America, 95, 12719–12723.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, A., Ito, H., Tanaka, R., Tanaka, N. K., Yoshida, K., & Okada, K. (1998b). Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proceedings of the National Academy of Sciences of the United States of America, 95, 12719–12723.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, R., Koshino, Y., Sawa, S., Ishiguro, S., Okada, K., & Tanaka, A. (2001). Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystem II in Arabidopsis thaliana. Plant Journal, 26, 365–373.

    CAS  PubMed  Google Scholar 

  • Tetali, S. D., Mitra, M., & Melis, A. (2007). Development of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii is regulated by the novel Tla1 gene. Planta, 225, 813–829.

    CAS  PubMed  Google Scholar 

  • Tran, M., Henry, R. E., Siefker, D., Van, C., Newkirk, G., Kim, J., Bui, J., & Mayfield, S. P. (2013). Production of anti-cancer immunotoxins in algae: Ribosome inactivating proteins as fusion partners. Biotechnology and Bioengineering, 110, 2826–2835.

    CAS  PubMed  Google Scholar 

  • Tsuchiya, T., Akimoto, S., Mizoguchi, T., Watabe, K., Kindo, H., Tomo, T., Tamiaki, H., & Mimuro, M. (2012a). Artificially produced [7-formyl]-chlorophyll d functions as an antenna pigment in the photosystem II isolated from the chlorophyllide a oxygenase-expressing Acaryochloris marina. Biochimica et Biophysica Acta-Bioenergetics, 1817, 1285–1291.

    CAS  Google Scholar 

  • Tsuchiya, T., Mizoguchi, T., Akimoto, S., Tomo, T., Tamiaki, H., & Mimuro, M. (2012b). Metabolic engineering of the Chl d-dominated cyanobacterium Acaryochloris marina: Production of a novel Chl species by the introduction of the Chlorophyllide a oxygenase gene. Plant and Cell Physiology, 53, 518–527.

    CAS  PubMed  Google Scholar 

  • Voitsekhovskaja, O. V., & Tyutereva, E. V. (2015). Chlorophyll b in angiosperms: Functions in photosynthesis, signaling and ontogenetic regulation. Journal of Plant Physiology, 189, 51–64.

    CAS  PubMed  Google Scholar 

  • Wang, S., Uddin, M. I., Tanaka, K., Yin, L., Shi, Z., Qi, Y., Mano, J., Matsui, K., Shimomura, N., Sakaki, T., Deng, X., & Zhang, S. (2014). Maintenance of chloroplast structure and function by overexpression of the rice MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE gene leads to enhanced salt tolerance in tobacco. Plant Physiology, 165, 1144–1155.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wannathong, T., Waterhouse, J. C., Young, R. E., Economou, C. K., & Purton, S. (2016). New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Applied Microbiology and Biotechnology, 100, 5467–5477.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, L., Wang, Q., Xin, Y., Lu, Y., & Xu, J. (2017). Enhancing photosynthetic biomass productivity of industrial oleaginous microalgae by overexpression of RuBisCO activase. Algal Research, 27, 366–375.

    Google Scholar 

  • Wittek, F., Hoffmann, T., Kanawati, B., Bichlmeier, M., Knappe, C., Wenig, M., Schmitt-Kopplin, P., Parker, J. E., Schwab, W., & Vlot, A. C. (2014). Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid. Journal of Experimental Botany, 65, 5919–5931.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Work, V. H., D’adamo, S., Radakovits, R., Jinkerson, R. E., & Posewitz, M. C. (2012). Improving photosynthesis and metabolic networks for the competitive production of phototroph-derived biofuels. Current Opinion in Biotechnology, 23, 290–297.

    CAS  PubMed  Google Scholar 

  • Wu, W., Ping, W., Wu, H., Li, M., Gu, D., & Xu, Y. (2013). Monogalactosyldiacylglycerol deficiency in tobacco inhibits the cytochrome b6f-mediated intersystem electron transport process and affects the photostability of the photosystem II apparatus. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1827, 709–722.

    CAS  Google Scholar 

  • Xu, H., Vavilin, D. & Vermaas, W. 2001. Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 98, 14168–14173.

    Google Scholar 

  • Xu, C., Härtel, H., Wada, H., Hagio, M., Yu, B., Eakin, C. & Benning, C. (2002). The pgp1 mutant locus of Arabidopsis encodes a Phosphatidylglycerolphosphate synthase with impaired activity. Plant Physiology, 129, 594–604.

    Google Scholar 

  • Yaeno, T., Matsuda, O., & Iba, K. (2004a). Role of chloroplast trienoic fatty acids in plant disease defense responses. The Plant Journal, 40, 931–941.

    CAS  PubMed  Google Scholar 

  • Yaeno, T., Matsuda, O., & Iba, K. (2004b). Role of chloroplast trienoic fatty acids in plant disease defense responses. The Plant Journal, 40, 931–941.

    Google Scholar 

  • Yamasato, A., Nagata, N., Tanaka, R., & Tanaka, A. (2005). The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll b accumulation in Arabidopsis. Plant Cell, 17, 1585–1597.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasato, A., Tanaka, R., & Tanaka, A. (2008). Loss of the N-terminal domain of chlorophyllide a oxygenase induces photodamage during greening of Arabidopsis seedlings. BMC Plant Biology, 8, 64.

    PubMed  PubMed Central  Google Scholar 

  • Yang, B., Liu, J., Ma, X., Guo, B., Liu, B., Wu, T., Jiang, Y., & Chen, F. (2017). Genetic engineering of the Calvin cycle toward enhanced photosynthetic CO2 fixation in microalgae. Biotechnology for Biofuels, 10, 229.

    PubMed  PubMed Central  Google Scholar 

  • Yu, B., & Benning, C. (2003). Anionic lipids are required for chloroplast structure and function in Arabidopsis. The Plant Journal, 36, 762–770.

    CAS  PubMed  Google Scholar 

  • Yu, B., Xu, C., & Benning, C. (2002). Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proceedings of the National Academy of Sciences of the United States of America, 99, 5732–5737.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X. P., & Glaser, E. (2002). Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone. Trends in Plant Science, 7, 14–21.

    CAS  PubMed  Google Scholar 

  • Zhang, Y. H., & Robinson, D. G. (1990). Cell-wall synthesis in Chlamydomonas reinhardtii: An immunological study on the wild type and wall-less mutants cw2 and cw15. Planta, 180, 229–236.

    CAS  PubMed  Google Scholar 

  • Zhang, R., Patena, W., Armbruster, U., Gang, S. S., Blum, S. R., & Jonikas, M. C. (2014). High-throughput genotyping of green algal mutants reveals random distribution of mutagenic insertion sites and endonucleolytic cleavage of transforming DNA. Plant Cell, 26, 1398–1409.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, M., Deng, X., Yin, L., Qi, L., Wang, X., Wang, S. & Li, H. 2016. Regulation of galactolipid biosynthesis by overexpression of the rice MGD gene contributes to enhanced aluminum tolerance in tobacco. Frontiers in Plant Science, 7.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Advanced Biomass R&D Center (ABC) of the Global Frontier Project funded by the Ministry of Science and ICT (ABC-2010-0029728 and 2011-0031350).

Competing Financial Interests

The authors declare no competing financial or nonfinancial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ki Jun Jeong , Byeong-ryool Jeong or Yong Keun Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koh, H.G., Ryu, A.J., Jeon, S., Jeong, K.J., Jeong, Br., Chang, Y.K. (2020). Photosynthetic Improvement of Industrial Microalgae for Biomass and Biofuel Production. In: Wang, Q. (eds) Microbial Photosynthesis. Springer, Singapore. https://doi.org/10.1007/978-981-15-3110-1_14

Download citation

Publish with us

Policies and ethics