Skip to main content

Epoxidases Involved in the Biosynthesis of Type II Sex Pheromones

  • Chapter
  • First Online:
Insect Sex Pheromone Research and Beyond

Part of the book series: Entomology Monographs ((ENTMON))

  • 478 Accesses

Abstract

In moth species that utilize alkenyl (type II) sex pheromones, selective epoxidation of double bonds in the alkene pheromone components confers further diversity on their chemical structures. Two arctiids, the fall webworm Hyphantria cunea and the mulberry tiger moth Lemyra imparilis, use the same epoxyalkene, Z3,Z6,epo9-21:H, as the main pheromone component. In these species, we recently identified cytochrome P450s (CYPs) belonging to the CYP341 family as enzymes involved in the specific epoxidation of a Z9 double bond of the pheromone precursor Z3,Z6,Z9-21:H. Furthermore, a cytochrome P450 belonging to a different family, CYP340, was identified as an enzyme responsible for the specific epoxidation of a Z3 double bond of the pheromone precursor Z3,Z6,Z9-19:H in the Japanese giant looper Ascotis selenaria, which uses epo3,Z6,Z9-19:H as the main pheromone component. These findings suggest that epoxidases (CYPs) with different regio-specificities evolved independently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ando T, Yamamoto M (2018) Internet Database. https://lepipheromone.sakura.ne.jp/lepi_phero_list

  • Ando T, Ohtani K, Yamamoto M, Miyamoto T, Qi XR, Witjaksono (1997) Sex Pheromone of Japanese giant looper, Ascotis selenaria cretacea: identification and field tests. J Chem Ecol 23:2413–2423

    Article  CAS  Google Scholar 

  • Ando T, Inomata S, Yamamoto M (2004) Lepidopteran sex pheromones. Top Curr Chem 239:51–96

    Article  CAS  Google Scholar 

  • Antony B, Fujii T, Moto K, Matsumoto S, Fukuzawa M, Nakano R, Tatsuki S, Ishikawa Y (2009) Pheromone-gland-specific fatty-acyl reductase in the adzuki bean borer, Ostrinia scapulalis (Lepidoptera: Crambidae). Insect Biochem Mol Biol 39:90–95

    Article  CAS  Google Scholar 

  • Blomquist GJ (2010) Biosynthesis of cuticular hydrocarbons. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, New York, pp 35–52

    Chapter  Google Scholar 

  • Calla B, Noble K, Johnson RM, Walden KK, Schuler MA, Robertson HM, Berenbaum MR (2017) Cytochrome P450 diversification and hostplant utilization patterns in specialist and generalist moths: birth, death and adaptation. Mol Ecol 26:6021–6035

    Article  CAS  Google Scholar 

  • Chino H (1985) Lipid transport: biochemistry of hemolymph lipophorin. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol. 10. Pergamon Press, New York, pp 115–135

    Google Scholar 

  • Daborn PJ, Lumb C, Boey A, Wong W, Batterham P (2007) Evaluating the insecticide resistance potential of eight Drosophila melanogaster cytochrome P450 genes by transgenic over-expression. Insect Biochem Mol Biol 37:512–519

    Article  CAS  Google Scholar 

  • Daimon T, Kozaki T, Niwa R, Kobayashi I, Furuta K (2012) Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori. PLoS Genet 8:e1002486

    Article  CAS  Google Scholar 

  • Després L, David JP, Gallet C (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol Evol 22:298–307

    Article  Google Scholar 

  • Feyereisen R (2012) Insect CYP genes and P450 enzymes. In: Gilbert LI (ed) Insect molecular biology and biochemistry. Academic, New York, pp 236–316

    Chapter  Google Scholar 

  • Finet C, Slavik K, Pu J, Carroll SB, Chung H (2019) Birth-and-death evolution of the fatty acyl-CoA reductase (FAR) gene family and diversification of cuticular hydrocarbon synthesis in Drosophila. Genome Biol Evol 11:1541–1551. https://doi.org/10.1101/509588

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujii T, Suzuki MG, Kawai T, Tsuneizumi K, Ohnishi A, Kurihara M, Matsumoto S, Ando T (2007) Determination of the pheromone-producing region that has epoxidation activity in the abdominal tip of the Japanese giant looper, Ascotis selenaria cretacea (Lepidoptera: Geometridae). J Insect Physiol 53:312–318

    Article  CAS  Google Scholar 

  • Fujii T, Suzuki MG, Katsuma S, Ito K, Rong Y, Matsumoto S, Ando T, Ishikawa Y (2013) Discovery of a disused desaturase gene from the pheromone gland of the moth Ascotis selenaria, which secretes an epoxyalkenyl sex pheromone. Biochem Biophys Res Comm 441:849–855

    Article  CAS  Google Scholar 

  • Fujii T, Yamamoto M, Nakano R, Nirazawa T, Rong Y, Dong SL, Ishikawa Y (2015) Alkenyl sex pheromone analogs in the hemolymph of an arctiid Eilema japonica and several non-arctiid moths. J Insect Physiol 82:109–113

    Article  CAS  Google Scholar 

  • Helvig C, Koener JF, Unnithan GC, Feyereisen R (2004) CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proc Natl Acad Sci U S A 101:4024–4029

    Article  CAS  Google Scholar 

  • Jurenka R (2004) Insect pheromone biosynthesis. In: The chemistry of pheromones and other semiochemicals I. Springer, Berlin/Heidelberg, pp 97–132

    Chapter  Google Scholar 

  • Jurenka R, Subchev M (2000) Identification of cuticular hydrocarbons and the alkene precursor to the pheromone in hemolymph of the female gypsy moth, Lymantria dispar. Arch Insect Biochem Physiol 43:108–115

    Article  CAS  Google Scholar 

  • Liénard MA, Hagström Ã…K, Lassance JM, Löfstedt C (2010) Evolution of multicomponent pheromone signals in small ermine moths involves a single fatty-acyl reductase gene. Proc Natl Acad Sci U S A 107:10955–10960

    Article  Google Scholar 

  • Liu W, Rooney AP, Xue B, Roelofs WL (2004) Desaturases from the spotted fireworm moth (Choristoneura parallela) shed light on the evolutionary origins of novel moth sex pheromone desaturases. Gene 342:303–311

    Article  CAS  Google Scholar 

  • MacLean M, Nadeau J, Gurnea T, Tittiger C, Blomquist GJ (2018) Mountain pine beetle (Dendroctonus ponderosae) CYP4Gs convert long and short chain alcohols and aldehydes to hydrocarbons. Insect Biochem Mol Biol 201:11–20

    Article  Google Scholar 

  • Matsumoto S, Hull JJ, Ohnishi A, Moto KI, Fónagy A (2007) Molecular mechanisms underlying sex pheromone production in the silkmoth, Bombyx mori: characterization of the molecular components involved in bombykol biosynthesis. J Insect Physiol 53:752–759

    Article  CAS  Google Scholar 

  • Matsuoka K, Tabunoki H, Kawai T, Ishikawa S, Yamamoto M, Sato R, Ando T (2006) Transport of a hydrophobic biosynthetic precursor by lipophorin in the hemolymph of geometrid female moth which secretes an epoxyalkenyl sex pheromone. Insect Biochem Mol Biol 36:576–583

    Article  CAS  Google Scholar 

  • Millar JG (2000) Polyene hydrocarbons and epoxides: a second major class of lepidopteran sex attractant pheromones. Annu Rev Entomol 45:575–604

    Article  CAS  Google Scholar 

  • Millar JG (2010) Polyene hydrocarbons, epoxides, and related compounds as components of lepidopteran pheromone blends. In: Blomquist GJ, Bagnères AG (eds) Insect Hydrocarbons. Cambridge University Press, New York, pp 390–447

    Chapter  Google Scholar 

  • Miyamoto T, Yamamoto M, Ono A, Ohtani K, Ando T (1999) Substrate specificity of the epoxidation reaction in sex pheromone biosynthesis of the Japanese giant looper (Lepidoptera: Geometridae). Insect Biochem Mol Biol 29:63–69

    Article  CAS  Google Scholar 

  • Moto K, Yoshiga T, Yamamoto M, Takahashi S, Okano K, Ando T, Nakata T, Matsumoto S (2003) Pheromone gland-specific fatty-acyl reductase of the silkmoth, Bombyx mori. Proc Natl Acad Sci U S A 100:9156–9161

    Article  CAS  Google Scholar 

  • Moto K, Suzuki GM, Hull JJ, Kurata R, Takahashi S, Yamamoto M, Okano K, Imai K, Ando T, Matsumoto S (2004) Involvement of a bifunctional fatty-acyl desaturase in the biosynthesis of the silkmoth, Bombyx mori, sex pheromone. Proc Natl Acad Sci U S A 101:8631–8636

    Article  CAS  Google Scholar 

  • Niu G, Rupasinghe SG, Zangerl AR, Siegel JP, Schuler MA, Berenbaum MR (2011) A substrate-specific cytochrome P450 monooxygenase, CYP6AB11, from the polyphagous navel orangeworm (Amyelois transitella). Insect Biochem Mol Biol 41:244–253. https://doi.org/10.1016/j.ibmb.2010.12.009

    Article  CAS  PubMed  Google Scholar 

  • Niwa R, Matsuda T, Yoshiyama T, Namiki T, Mita K, Fujimoto Y, Kataoka H (2004) CYP306A1, a cytochrome P450 enzyme, is essential for ecdysteroid biosynthesis in the prothoracic glands of Bombyx and Drosophila. J Biol Chem 279:35942–35949

    Article  CAS  Google Scholar 

  • Ortiz de Montellano PR (2015) Substrate oxidation by cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450. Springer, Boston, pp 111–176

    Google Scholar 

  • Parker RE, Isaacs NS (1959) Mechanisms of epoxide reactions. Chem Rev 59:737–799

    Article  CAS  Google Scholar 

  • Qiu Y, Tittiger C, Wicker–Thomas C, Le Goff G, Young S, Wajnberg E, Fricauxc T, Taquetc N, Blomquist GJ, Feyereisen R (2012) An insect–specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci USA 109:14858–14863

    Article  CAS  Google Scholar 

  • Regier JC, Mitter C, Mitter K, Cummings MP, Bazinet AL, Hallwachs W, Janzen DH, Zwick A (2017) Further progress on the phylogeny of Noctuoidea (Insecta: Lepidoptera) using an expanded gene sample. Syst Entomol 42(1):82–93

    Article  Google Scholar 

  • Rong Y, Fujii T, Katsuma S, Yamamoto M, Ando T, Ishikawa Y (2014) CYP341B14: a cytochrome P450 involved in the specific epoxidation of pheromone precursors in the fall webworm Hyphantria cunea. Insect Biochem Mol Biol 54:122–128

    Article  CAS  Google Scholar 

  • Rong Y, Fujii T, Naka H, Yamamoto M, Ishikawa Y (2019a) Functional characterization of the epoxidase gene, Li_epo1 (CYP341B14), involved in generation of epoxyalkene pheromones in the mulberry tiger moth Lemyra imparilis. Insect Biochem Mol Biol 107:46–52

    Article  CAS  Google Scholar 

  • Rong Y, Fujii T, Ishikawa Y (2019b) CYPs in different families are involved in the divergent regio-specific epoxidation of alkenyl sex pheromone precursors in moths. Insect Biochem Mol Biol 108:9–15

    Article  CAS  Google Scholar 

  • Schal C, Sevala V (1998) Novel and highly specific transport of a volatile sex pheromone by hemolymph lipophorin in moths. Naturwissenschaften 85:339–342

    Article  CAS  Google Scholar 

  • Schuler MA (2011) P450s in plant-insect interactions. Biochim Biophys Acta 1814:36–45. https://doi.org/10.1016/j.bbapap.2010.09.012

    Article  CAS  PubMed  Google Scholar 

  • Schuler MA, Berenbaum MR (2013) Structure and function of cytochrome P450s in insect adaptation to natural and synthetic toxins: insights gained from molecular modeling. J Chem Ecol 39:1232–1245. https://doi.org/10.1007/s10886-013-0335-7

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Miyamoto T, Endo M, Murakawa T, Pu G-Q, Ando T (2003) Polyunsaturated hydrocarbons in the hemolymph: biosynthetic precursors of epoxy pheromones of geometrid and Arctiid moths. Insect Biochem Mol Biol 33:397–405

    Article  CAS  Google Scholar 

  • Wei W, Yamamoto M, Asato T, Fujii T, Pu GQ, Ando T (2004) Selectivity and neuroendocrine regulation of the precursor uptake by pheromone glands from hemolymph in geometrid female moths, which secrete epoxyalkenyl sex pheromones. Insect Biochem Mol Biol 34:1215–1224

    Article  CAS  Google Scholar 

  • Yu L, Tang W, He W, Ma X, Vasseur L, Baxter SW, Yang G, Huang S, Song F, You M (2015) Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.). Sci Rep 5:8952

    Article  CAS  Google Scholar 

  • Yu Z, Zhang X, Wang Y, Moussian B, Zhu KY, Li S, Ma E, Zhang J (2016) LmCYP4G102: an oenocyte-specific cytochrome P450 gene required for cuticular waterproofing in the migratory locust, Locusta migratoria. Sci Rep 6:29980

    Article  CAS  Google Scholar 

  • Zahiri R, Holloway JD, Kitching IJ, Donald Lafontaine J, Mutanen M, Wahlberg N (2012) Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea). Syst Entomol 37(1):102–124

    Article  Google Scholar 

Download references

Acknowledgment

We thank Prof. Tetsu Ando, Dr. Masanobu Yamamoto, and Dr. Masataka G. Suzuki for continuous support of this study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fujii, T., Rong, Y., Ishikawa, Y. (2020). Epoxidases Involved in the Biosynthesis of Type II Sex Pheromones. In: Ishikawa, Y. (eds) Insect Sex Pheromone Research and Beyond. Entomology Monographs. Springer, Singapore. https://doi.org/10.1007/978-981-15-3082-1_8

Download citation

Publish with us

Policies and ethics