Skip to main content

An Overview on the Effect of Soil Physicochemical Properties on the Immobilization of Biogenic Nanoparticles

  • Chapter
  • First Online:
Biogenic Nano-Particles and their Use in Agro-ecosystems

Abstract

There are various methods available today for the synthesis of biogenic nanoparticles (by plants, algae, yeast, bacteria, fungi and waste material), which, due to their cheapness and environmental effects, are superior to chemical synthesis. Soil microorganisms by the secretion of various substances (such as a variety of enzymes, proteins, amino acids, etc.) play a critical role in the synthesis and bioavailability of biogenic nanoparticles in the soil. Synthesized biogenic nanoparticles, due to their nature as well as their surface properties, can lead to the bioremediation of inorganic and organic contaminants in the soil. Among the physicochemical properties of the soil, pH, organic matter content and clay seem to have the most influence on the distribution and immobilization of soil nanoparticles. These nanoparticles may be accumulated in the soil for various reasons or may be transported to groundwater and lead to contamination in humans, animals, plants and microorganisms. Therefore, it is necessary to understanding the behaviour of nanoparticles in the soil, which influence soil physicochemical properties, and to assessing possibility hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmadi SZ, Ghorbanpour M, Hadian J, Salehi-Arjmand H (2018) Impact of foliar spray of spherical nano-carbon and salicylic acid on physiological traits and parthenolide content in two feverfew cultivars (Tanacetum parthenium Linn. cv. Pharmasaat and Jelitto). J Med Plants 17(4):82–98

    Google Scholar 

  • Aiken GR, Hsu-Kim H, Ryan JN (2011) Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ Sci Technol 45:3196–3201

    CAS  PubMed  Google Scholar 

  • Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med Oxford 56:300–306

    CAS  Google Scholar 

  • Alshehri A, Malik MA, Khan Z, Al-Thabaiti SA, Hasan N (2017) Biofabrication of Fe nanoparticles in aqueous extract of Hibiscus sabdariffa with enhanced photocatalytic activities. RSC Adv 7(40):25149–25159

    CAS  Google Scholar 

  • Annamalai J, Nallamuthu T (2015) Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Appl Nanosci 5(5):603–607

    CAS  Google Scholar 

  • Antisari LV, Carbone S, Gatti A, Vianello G, Nannipieri P (2013) Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem 60:87–94

    Google Scholar 

  • Antonyraj CA, Jeong J, Kim B, Shin S, Kim S, Lee KY, Cho JK (2013) Selective oxidation of HMF to DFF using Ru/γ-alumina catalyst in moderate boiling solvents toward industrial production. J Ind Eng Chem 19(3):1056–1059

    CAS  Google Scholar 

  • Arumugam P, Berchmans S (2011) Synthesis of gold nanoparticles: an ecofriendly approach using Hansenula anomala. ACS Appl Mater Interfaces 3(5):1418–1425

    PubMed  Google Scholar 

  • Auffan M, Rose J, Wiesner MR, Bottero J-Y (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–1133

    CAS  PubMed  Google Scholar 

  • Baiazidi-Aghdam MT, Mohammadi H, Ghorbanpour M (2016) Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well watered and drought stress conditions. Braz J Bot 39:139–146

    Google Scholar 

  • Balagurunathan R, Radhakrishnan M, Rajendran RB, Velmurugan D (2011) Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. Indian J Biochem Biophys 48(5):331–335

    CAS  PubMed  Google Scholar 

  • Banfield JF, Zhang H (2001) Nanoparticles in the environment. In: Banfield JF, Navrotsky A (eds) Nanoparticles and the environment, Reviews in Mineralogy & Geochemistry, vol 44. Mineralogical Society of America, Chantilly, pp 1–58

    Google Scholar 

  • Baptist F, Zinger L, Clement JC, Gallet C, Guillemin R, Martins JMF et al (2008) Tannin impacts on microbial diversity and the functioning of alpine soils: a multidisciplinary approach. Environ Microbiol 10(3):799–809

    CAS  PubMed  Google Scholar 

  • Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 339(1–3):134–139

    CAS  Google Scholar 

  • Barabadi H, Honary S, Ebrahimi P, Mohammadi MA, Alizadeh A, Naghibi F (2014) Microbial mediated preparation, characterization and optimization of gold nanoparticles. Braz J Microbiol 45(4):1493–1501

    CAS  PubMed  Google Scholar 

  • Bargar JR, Bernier-Latmani R, Giammar DE, Tebo BM (2008) Biogenic uraninite nanoparticles and their importance for uranium remediation. Elements 4:407–412

    Google Scholar 

  • Barwal I, Ranjan P, Kateriya S, Yadav S (2011) Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnol 9(1):56

    CAS  Google Scholar 

  • Basavegowda N, Rok Lee Y (2013) Synthesis of silver nanoparticles using Satsuma mandarin (Citrus unshiu) peel extract: a novel approach towards waste utilization. Mater Lett 109:31–33

    CAS  Google Scholar 

  • Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90(2):640–646

    CAS  PubMed  Google Scholar 

  • Bhat MA, Nayak BK, Nanda A (2015) Evaluation of bactericidal activity of biologically synthesised silver nanoparticles from Candida albicans in combination with ciprofloxacin. Mater Today Proc 2(9):4395–4401

    Google Scholar 

  • Bhattacharya D, Gupta RK (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25(4):199–204

    CAS  PubMed  Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87(7):1181–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boxall A, Chaudhry Q, Cinclair C, Jones A, Aitken R, Jefferson B, Watts C (2007) Current and future predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, Sand Hutton

    Google Scholar 

  • Brondani D, Scheeren CW, Dupont J, Vieira IC (2009) Biosensor based on platinum nanoparticles dispersed in ionic liquid and laccase for determination of adrenaline. Sensors Actuators B Chem 140(1):252–259

    CAS  Google Scholar 

  • Brumbaugh AD, Cohen KA, St. Angelo SK (2014) Ultrasmall copper nanoparticles synthesized with a plant tea reducing agent. ACS Sustain Chem Eng 2(8):1933–1939

    CAS  Google Scholar 

  • Buffle J, Wilkinson KJ, Stoll S, Filella M, Zhang J (1998) A generalized description of aquatic colloidal interactions: the three-colloidal component approach. Environ Sci Technol 32(19):2887–2899

    CAS  Google Scholar 

  • Burke DJ, Zhu S, Pablico-Lansigan MP, Hewins CR, Samia ACS (2014) Titanium oxide nanoparticle effects on composition of soil microbial communities and plant performance. Biol Fertil Soils 50:1169–1173

    CAS  Google Scholar 

  • Byrne JM, Telling ND, Coker VS, Pattrick RAD, Van Der Laan G, Arenholz E et al (2011) Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens. Nanotechnology 22(45):455709

    CAS  PubMed  Google Scholar 

  • Cai W, Gao T, Hong H, Sun J (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 1:17–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai F, Li J, Sun J, Ji Y (2011) Biosynthesis of gold nanoparticles by biosorption using Magnetospirillum gryphiswaldense MSR-1. Chem Eng J 175:70–75

    CAS  Google Scholar 

  • Cambardella CA, Elliott ET (1992) Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci Soc Am J 56(3):777–783

    Google Scholar 

  • Castro L, Blázquez ML, Muñoz JA, González F, Ballester A (2013) Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol 7:109–116

    CAS  PubMed  Google Scholar 

  • Castro ME, Cottet L, Castillo A (2014) Biosynthesis of gold nanoparticles by extracellular molecules produced by the phytopathogenic fungus Botrytis cinerea. Mater Lett 115:42–44

    CAS  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B: Biointerfaces 83(1):42–48

    CAS  PubMed  Google Scholar 

  • Catherine CB, Adam SGC (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R198

    Google Scholar 

  • Chai H, Yao J, Sun J, Zhang C, Liu W, Zhu M, Ceccanti B (2015) The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bull Environ Contam Toxicol 94(4):490–495

    CAS  PubMed  Google Scholar 

  • Chan YS, Mat Don M (2013) Biosynthesis and structural characterization of Ag nanoparticles from white rot fungi. Mater Sci Eng C 33(1):282–288

    CAS  Google Scholar 

  • Chegini E, Ghorbanpour M, Hatam M, Taghizadeh M (2017) Effect of multi-walled carbon nanotubes on physiological traits, phenolic contents and antioxidant capacity of Salvia mirzayanii Rech. f. & Esfand. under drought stress. J Med Plants 16(2):191–207

    Google Scholar 

  • Chen W, Smith DS, Guéguen C (2013) Influence of water chemistry and dissolved organic matter (DOM) molecular size on copper and mercury binding determined by multiresponse fluorescence quenching. Chemosphere 92:351–359

    CAS  PubMed  Google Scholar 

  • Chorover J, Kretzschmar R, Garcia-Pichel F, Sparks DL (2007) Soil biogeochemical processes within the critical zone. Elements 3:321–326

    CAS  Google Scholar 

  • Cornelis G, Kirby JK, Beak D, Chittleborough D, McLaughlin MJ (2010) A method for determination of retention of silver and cerium oxide manufactured nanoparticles in soils. Environ Chem 7(3):298–308

    CAS  Google Scholar 

  • Coutris C, Joner EJ, Oughton DH (2012) Aging and soil organic matter content affect the fate of silver nanoparticles in soil. Sci Total Environ 420:327–333

    CAS  PubMed  Google Scholar 

  • Das SK, Dickinson C, Lafir F, Brougham DF, Marsili E (2012) Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem 14(5):1322–1334

    CAS  Google Scholar 

  • Dauthal P, Mukhopadhyay M (2016) Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res 55(36):9557–9577

    CAS  Google Scholar 

  • Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173–174:19–27

    Google Scholar 

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11

    Google Scholar 

  • Douglas S, Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microbiol Ecol 26:79–88

    CAS  Google Scholar 

  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO 2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822–828

    CAS  PubMed  Google Scholar 

  • Durán N, Marcato PD (2012) Biotechnological routes to metallic nanoparticles production: mechanistics aspects, antimicrobial activity, toxicity and industrial applications. In: Rai M, Cioffi N (eds) Nano-antimicrobials: progress and prospects, vol part 3. Springer, Berlin, pp 337–374

    Google Scholar 

  • Durán N, Marcato PD, Conti RD, Alves OL, Costa F, Brocchi M (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21(6):949–959

    Google Scholar 

  • Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants. Appl Microbiol Biotechnol 90:1609–1624

    PubMed  Google Scholar 

  • Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM (2013) Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev 113(7):4708–4754

    CAS  PubMed  Google Scholar 

  • Edison TNJI, Atchudan R, Kamal C, Lee YR (2016) Caulerpa racemosa: a marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methylene blue. Bioprocess Biosyst Eng 39(9):1401–1408

    CAS  PubMed  Google Scholar 

  • Elavazhagan T, Arunachalam KD (2011) Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. Int J Nanomedicine 6:1265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis LJA, Valsami-Jones E, Lead JR, Baalousha M (2016) Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment. Sci Total Environ 568:95–106

    CAS  PubMed  Google Scholar 

  • Erhayem M, Sohn M (2014) Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter. Sci Total Environ 468:249–257

    PubMed  Google Scholar 

  • Eroglu E, Chen X, Bradshaw M, Agarwal V, Zou J, Stewart SG, Duan X, Lamb RN, Smith SM, Raston CL, Iyer KS (2013) Biogenic production of palladium nanocrystals using microalgae and their immobilization on chitosan nanofibers for catalytic applications. RSC Adv 3(4):1009–1012

    CAS  Google Scholar 

  • Fahimirad S, Ajalloueian F, Ghorbanpour M (2019) Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicol Environ Saf 168:260–278

    CAS  PubMed  Google Scholar 

  • Fattahi Meyabadi T, Dadashian F, Mir Mohamad Sadeghi G, Ebrahimi Zanjani Asl H (2014) Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technol 261:232–240

    CAS  Google Scholar 

  • Fayaz AM, Girilal M, Rahman M, Venkatesan R, Kalaichelvan PT (2011) Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus. Process Biochem 46(10):1958–1962

    Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 103(3):626–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frances N, Nikolay AP, Michael JFB, Tim G, Paul AM (2009) Novel one-pot synthesis and characterization of bioactive thiol-silicate nanoparticles for biocatalytic and biosensor applications. Nanotechnology 20(5):055612

    Google Scholar 

  • French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Baveye PC (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43(5):1354–1359

    CAS  PubMed  Google Scholar 

  • Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soiltypes. PLoS One 8(12):e84441

    PubMed  PubMed Central  Google Scholar 

  • Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3:1–13

    Google Scholar 

  • Gao L, Li R, Sui X, Li R, Chen C, Chen Q (2014) Conversion of chicken feather waste to N-doped carbon nanotubes for the catalytic reduction of 4-nitrophenol. Environ Sci Technol 48(17):10191–10197

    CAS  PubMed  Google Scholar 

  • Gautam PK, Singh A, Misra K, Sahoo AK, Samanta SK (2019) Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment. J Environ Manag 231:734–748

    CAS  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45(4):1659–1664

    CAS  PubMed  Google Scholar 

  • Ghorbanpour M (2015) Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Indian J Plant Physiol 20(3):249–256

    Google Scholar 

  • Ghorbanpour M, Fahimirad SH (2017) Plant nanobionics a novel approach to overcome the environmental challenges. In: Ghorbanpour M, Varma A (eds) Medicinal plants and environmental challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-68717-9_14

    Chapter  Google Scholar 

  • Ghorbanpour M, Hadian J (2015) Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Saturejakhuzestanica grown in vitro. Carbon 94:749–759

    CAS  Google Scholar 

  • Ghorbanpour M, Hadian J (2017) Engineered nanomaterials and their interactions with plant cells: injury indices and detoxification pathways. In: Ghorbanpour M et al (eds) Nanoscience and plant–soil systems, Soil biology 48. Springer, Cham. https://doi.org/10.1007/978-3-319-46835-8_13

    Chapter  Google Scholar 

  • Ghorbanpour M, Hatami M (2014) Spray treatment with silver nanoparticles plus thidiazuron increases anti-oxidant enzyme activities and reduces petal and leaf abscission in four cultivars of geranium (Pelargonium zonale) during storage in the dark. J Hortic Sci Biotechnol 89(6):712–718

    CAS  Google Scholar 

  • Ghorbanpour M, Hatami H (2015) Changes in growth, antioxidant defense system and major essential oils constituents of Pelargonium graveolens plant exposed to nano-scale silver and thidiazuron. Indian J Plant Physiol 20(2):116–123

    Google Scholar 

  • Ghorbanpour M, Hatami M, Hatami M (2015) Activating antioxidant enzymes, hyoscyamine and scopolamine biosynthesis of Hyoscyamusniger L. plants with nano-sized titanium dioxide and bulk application. Acta Agric Slov 105:23–32

    CAS  Google Scholar 

  • Ghorbanpour M, Khaltabadi Farahani AH, Hadian J (2018) Potential toxicity of nano-graphene oxide on callus cell of Plantago major L. under polyethylene glycol-induced dehydration. Ecotoxicol Environ Saf 148:910–922

    CAS  Google Scholar 

  • Giasuddin AB, Kanel SR, Choi H (2007) Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ Sci Technol 41(6):2022–2027

    CAS  PubMed  Google Scholar 

  • Giller KE, Witter E, Mcgrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30(10–11):1389–1414

    CAS  Google Scholar 

  • Gomathy M, Sabarinathan KG (2010) Microbial mechanisms of heavy metal tolerance-a review. Agric Rev 31(2):133–138

    Google Scholar 

  • Gopal JV, Thenmozhi M, Kannabiran K, Rajakumar G, Velayutham K, Rahuman AA (2013) Actinobacteria mediated synthesis of gold nanoparticles using Streptomyces sp. VITDDK3 and its antifungal activity. Mater Lett 93:360–362

    Google Scholar 

  • Gopalakrishnan K, Ramesh C, Ragunathan V, Thamilselvan M (2012) Antibacterial activity of Cu2O nanoparticles on E. coli synthesized from Tridax procumbens leaf extract and surface coating with polyaniline. Dig J Nanomater Biostruct 7(2):833–839

    Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    CAS  PubMed  Google Scholar 

  • Guilger M, Pasquoto-Stigliani T, Bilesky-Jose N, Grillo R, Abhilash PC, Fraceto LF, De Lima R (2017) Biogenic silver nanoparticles based on trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity. Sci Rep 7:44421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    CAS  PubMed  Google Scholar 

  • Hakim LF, Portman JL, Casper MD, Weimer AW (2005) Aggregation behavior of nanoparticles in fluidized beds. Powder Technol 160(3):149–160

    CAS  Google Scholar 

  • Hatami M (2017) Stimulatory and inhibitory effects of nanoparticulates on seed germination and seedling vigor indices. In: Ghorbanpour M et al (eds) Nanoscience and plant–soil systems, Soil biology 48. Springer, Cham. https://doi.org/10.1007/978-3-319-46835-8_13

    Chapter  Google Scholar 

  • Hatami M, Ghorbanpour M (2013) Effect of nanosilver on physiological performance of Pelargonium plants exposed to dark storage. J Hortic Res 21(1):15–20

    CAS  Google Scholar 

  • Hatami M, Ghorbanpour M (2014) Defense enzymes activity and biochemical variations of Pelargonium zonalein response to nanosilver particles and dark storage. Turk J Biol 38:130–139

    CAS  Google Scholar 

  • Hatami M, Hatamzadeh A, Ghasemnezhad M, Ghorbanpour M (2013) The comparison of antimicrobial effects of silver nanoparticles (SNP) and silver nitrate(AgNo3) to extend the vase life of ‘red ribbon’ cut rose flowers. Trakia J Sci 2:144–151

    Google Scholar 

  • Hatami M, Ghorbanpour M, Salehiarjomand H (2014) Nano-anatase TiO2 modulates the germination behavior and seedling vigority of the five commercially important medicinal and aromatic plants. J Biol Environ Sci 8(22):53–59

    Google Scholar 

  • Hatami M, Kariman K, Ghorbanpour M (2016) Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. Sci Total Environ 571:275–291

    CAS  PubMed  Google Scholar 

  • Hatami M, Hadian J, Ghorbanpour M (2017) Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. J Hazard Mater 324:306–320

    CAS  PubMed  Google Scholar 

  • Hatami M, Hosseini SM, Ghorbanpour M, Kariman K (2019) Physiological and antioxidative responses to GO/PANI nanocomposite in intact and demucilaged seeds and young seedlings of Salvia mirzayanii. Chemosphere 233:920–935

    CAS  PubMed  Google Scholar 

  • Hedberg J, Oromieh AG, Kleja DB, Wallinder IO (2015) Sorption and dissolution of bare and coated silver nanoparticles in soil suspensions—influence of soil and particle characteristics. J Environ Sci Health A 50(9):891–900

    CAS  Google Scholar 

  • Hennebel T, De Corte S, Verstraete W, Boon N (2012) Microbial production and environmental applications of Pd nanoparticles for treatment of halogenated compounds. Curr Opin Biotechnol 23(4):555–561

    CAS  PubMed  Google Scholar 

  • Holden PA, Schimel JP, Godwin HA (2014) Five reasons to use bacteria when assessing manufactured nanomaterial environmental hazards and fates. Curr Opin Biotechnol 27:73–78

    CAS  PubMed  Google Scholar 

  • Hoppe M, Mikutta R, Utermann J, Duijnisveld W, Guggenberger G (2014) Retention of sterically and electrosterically stabilized silver nanoparticles in soils. Environ Sci Technol 48(21):12628–12635

    CAS  PubMed  Google Scholar 

  • Hua Z, Tang Z, Bai X, Zhang J, Yu L, Cheng H (2015) Aggregation and resuspension of graphene oxide in simulated natural surface aquatic environments. Environ Pollut 205:161–169

    CAS  PubMed  Google Scholar 

  • Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 67(3–4):1003–1006

    CAS  PubMed  Google Scholar 

  • Ibrahim HMM (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8(3):265–275

    Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650

    CAS  Google Scholar 

  • Iwahori K, Watanabe JI, Tani Y, Seyama H, Miyata N (2014) Removal of heavy metal cations by biogenic magnetite nanoparticles produced in Fe (III)-reducing microbial enrichment cultures. J Biosci Bioeng 117(3):333–335

    CAS  PubMed  Google Scholar 

  • Jain R, Jordan N, Schild D, Van Hullebusch ED, Weiss S, Franzen C et al (2015) Adsorption of zinc by biogenic elemental selenium nanoparticles. Chem Eng J 260:855–863

    CAS  Google Scholar 

  • Jena J, Pradhan N, Dash BP, Sukla LB, Panda PK (2013) Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity. Int J Nanomater Biostruct 3(1):1–8

    Google Scholar 

  • Jiménez-Lamana J, Slaveykova VI (2016) Silver nanoparticle behaviour in lake water depends on their surface coating. Sci Total Environ 573:946–953

    PubMed  Google Scholar 

  • Johnson NC, Manchester S, Sarin L, Gao Y, Kulaots I, Hurt RH (2008) Mercury vapor release from broken compact fluorescent lamps and in situ capture by new nanomaterial sorbents. Environ Sci Technol 42(15):5772–5778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joo HS, Kalbassi MR, Yu IJ, Lee JH, Johari SA (2013) Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): influence of concentration and salinity. Aquat Toxicol 140:398–406

    Google Scholar 

  • Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7):2171–2178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanchi S, Kumar G, Lo AY, Tseng CM, Chen SK, Lin CY, Chin TS (2018) Exploitation of de-oiled jatropha waste for gold nanoparticles synthesis: a green approach. Arab J Chem 11(2):247–255

    CAS  Google Scholar 

  • Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T (2015) Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci 5(4):499–504

    CAS  Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15(6):1692

    Google Scholar 

  • Khadem Moghadam N, Hatami M, Rezaei S, Bayat M, Asgari Lajayer B (2019) Induction of plant defense machinery against nanomaterials exposure. In: Ghorbanpour M, Wani SH (eds) Advances in phytonanotechnology: from synthesis to application. Elsevier Inc, London

    Google Scholar 

  • Khan MS, Vishakante GD, Siddaramaiah H (2013) Gold nanoparticles: a paradigm shift in biomedical applications. Adv Colloid Interf Sci 199–200:44–58

    Google Scholar 

  • Khan ME, Khan MM, Cho MH (2016) Fabrication of WO 3 nanorods on graphene nanosheets for improved visible light-induced photocapacitive and photocatalytic performance. RSC Adv 6(25):20824–20833

    CAS  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14(1):95

    Google Scholar 

  • Kretzschmar R, Schäfer T (2005) Metal retention and transport on colloidal particles in the environment. Elements 1:205–210

    CAS  Google Scholar 

  • Krishnaswamy K, Vali H, Orsat V (2014) Value-adding to grape waste: green synthesis of gold nanoparticles. J Food Eng 142:210–220

    CAS  Google Scholar 

  • Kumar N, Shah V, Walker VK (2011) Perturbation of an arctic soil microbial community by metal nanoparticles. J Hazard Mater 190(1–3):816–822

    CAS  PubMed  Google Scholar 

  • Kumar DA, Palanichamy V, Roopan SM (2014) Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 127:168–171

    CAS  PubMed  Google Scholar 

  • Kuppusamy P, Mashitah MY, Maniam GP, Govindan N (2014) Biosynthesized gold nanoparticle developed as a tool for detection of HCG hormone in pregnant women urine sample. Asian Pac J Trop Dis 4(3):237

    Google Scholar 

  • Labud V, Garcia C, Hernandez T (2007) Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere 66(10):1863–1871

    CAS  PubMed  Google Scholar 

  • Lakshmipathy R, Palakshi Reddy B, Sarada NC, Chidambaram K, Khadeer Pasha S (2015) Watermelon rind-mediated green synthesis of noble palladium nanoparticles: catalytic application. Appl Nanosci 5(2):223–228

    CAS  Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S, Cecillon L, Bureau S, Barthès V, Ouerdane L, Carriere M, Sarret G (2014) Foliar exposure of the cropLactucasativa to silver nanoparticles: evidence for internalization and changes in Agspeciation. J Hazard Mater 264:98–106

    CAS  PubMed  Google Scholar 

  • Lee HJ, Lee G, Jang NR, Yun JH, Song JY, Kim BS (2011) Biological synthesis of copper nanoparticles using plant extract. Nanotechnology 1(1):371–374

    CAS  Google Scholar 

  • Leifeld J (2006) Application of diffuse reflectance FT-IR spectroscopy and partial least-squares regression to predict NMR properties of soil organic matter. Eur J Soil Sci 57(6):846–857

    CAS  Google Scholar 

  • Lejon DP, Martins JM, Lévêque J, Spadini L, Pascault N, Landry D et al (2008) Copper dynamics and impact on microbial communities in soils of variable organic status. Environ Sci Technol 42(8):2819–2825

    CAS  PubMed  Google Scholar 

  • Li S, Ma H, Wallis LK, Etterson MA, Riley B, Hoff DJ, Diamond SA (2016) Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles. Sci Total Environ 542:324–333

    CAS  PubMed  Google Scholar 

  • Li M, Wang P, Dang F, Zhou DM (2017) The transformation and fate of silver nanoparticles in paddy soil: effects of soil organic matter and redox conditions. Environ Sci Nano 4(4):919–928

    CAS  Google Scholar 

  • Liang M, Su R, Huang R, Qi W, Yu Y, Wang L, He Z (2014) Facile in situ synthesis of silver nanoparticles on procyanidin-grafted eggshell membrane and their catalytic properties. ACS Appl Mater Interfaces 6(7):4638–4649

    CAS  PubMed  Google Scholar 

  • Louie SM, Tilton RD, Lowry GV (2013) Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation. Environ Sci Technol 47(9):4245–4254

    CAS  PubMed  Google Scholar 

  • Luo P, Liu Y, Xia Y, Xu H, Xie G (2014) Aptamer biosensor for sensitive detection of toxin A of Clostridium difficile using gold nanoparticles synthesized by Bacillus stearothermophilus. Biosens Bioelectron 54:217–221

    CAS  PubMed  Google Scholar 

  • Machado S, Grosso JP, Nouws HPA, Albergaria JT, Delerue-Matos C (2014) Utilization of food industry wastes for the production of zero-valent iron nanoparticles. Sci Total Environ 496:233–240

    CAS  PubMed  Google Scholar 

  • Macken A, Byrne HJ, Thomas KV (2012) Effects of salinity on the toxicity of ionic silver and Ag-PVP nanoparticles to Tisbe battagliai and Ceramium tenuicorne. Ecotoxicol Environ Saf 86:101–110

    CAS  PubMed  Google Scholar 

  • Maghsoodi MR, Asgari Lajayer B, Hatami M (2019) Challenges and opportunities of nanotechnology in plants-soil mediated systems: beneficial role, phytotoxicity and phytoextraction. In: Ghorbanpour M, Wani SH (eds) Advances in phytonanotechnology: from synthesis to application. Elsevier Inc, London

    Google Scholar 

  • Magnacca G, Allera A, Montoneri E, Celi L, Benito DE, Gagliardi LG, Gonzalez MC, Mártire DO, Carlos L (2014) Novel magnetite nanoparticles coated with waste sourced bio based substances as sustainable and renewable adsorbing materials. ACS Sustain Chem Eng 2(6):1518–1524

    CAS  Google Scholar 

  • Makarov VV, Makarova SS, Love AJ, Sinitsyna OV, Dudnik AO, Yaminsky IV et al (2014) Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir 30(20):5982–5988

    CAS  PubMed  Google Scholar 

  • Malhotra A, Sharma N, Navdezda, Kumar N, Dolma K, Sharma D, Nandanwar HS, Choudhury AR (2014) Multi-analytical approach to understand biomineralization of gold using rice bran: a novel and economical route. RSC Adv 4(74):39484–39490

    CAS  Google Scholar 

  • Manceau A, Tamura N, Celestre RS, MacDowell AA, Geoffroy N, Sposito G, Padmore HA (2003) Molecular-scale speciation of Zn and Ni in soil ferromanganese nodules from loess soils of the Mississippi Basin. Environ Sci Technol 37:75–80

    CAS  PubMed  Google Scholar 

  • Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T, Kirpichtchikova T (2008a) Formation of metallic copper nanoparticles at the soil-root interface. Environ Sci Technol 42:1766–1777

    CAS  PubMed  Google Scholar 

  • Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T, Kirpichtchikova T (2008b) Formation of metallic copper nanoparticles at the soil-root interface. Environ Sci Technol 42(5):1766–1772

    CAS  PubMed  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69(5):485–492

    CAS  PubMed  Google Scholar 

  • Maroufpour N, Mousavi M, Hatami M, Rasoulnia A, Asgari Lajayer B (2019) Mechanisms involved in stimulatory and toxicity effects of nanomaterials on seed germination and early seedling growth. In: Ghorbanpour M, Wani SH (eds) Advances in phytonanotechnology: from synthesis to application. Elsevier Inc, London

    Google Scholar 

  • Martins JM, Mermoud A (1998) Sorption and degradation of four nitroaromatic herbicides in mono and multi-solute saturated/unsaturated soil batch systems. J Contam Hydrol 33(1–2):187–210

    CAS  Google Scholar 

  • Martins M, Mourato C, Sanches S, Noronha JP, Crespo MB, Pereira IA (2017) Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Res 108:160–168

    CAS  PubMed  Google Scholar 

  • Mata YN, Torres E, Blazquez ML, Ballester A, González FMJA, Munoz JA (2009) Gold (III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166(2–3):612–618

    CAS  PubMed  Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New York. 416 pp

    Google Scholar 

  • McKenzie RM (1989) Manganese oxides and hydroxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments, 2nd edn. Soil Science Society of America, Madison, pp 439–465

    Google Scholar 

  • Mishra A, Tripathy SK, Yun SI (2011) Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J Nanosci Nanotechnol 11(1):243–248

    CAS  PubMed  Google Scholar 

  • Mishra A, Tripathy SK, Yun S-I (2012) Fungus mediated synthesis of gold nanoparticles and their conjugation with genomic DNA isolated from Escherichia coli and Staphylococcus aureus. Process Biochem 47(5):701–711

    CAS  Google Scholar 

  • Mohammadi M, Hatami M, Feghezadeh K, Ghorbanpour M (2018) Mitigating effect of nano-zerovalent iron, iron sulfate and EDTA against oxidative stress induced by chromium in Helianthus annuus L. Acta Physiol Plant 40:69

    Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    CAS  Google Scholar 

  • Montes MO, Mayoral A, Deepak FL, Parsons JG, Jose-Yacamán M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Anisotropic gold nanoparticles and gold plates biosynthesis using alfalfa extracts. J Nanopart Res 13(8):3113–3121

    CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519

    CAS  Google Scholar 

  • Mullet M, Boursiquot S, Ehrhardt JJ (2004) Removal of hexavalent chromium from solutions by mackinawite, tetragonal FeS. Colloids Surf A Physicochem Eng Asp 244(1–3):77–85

    CAS  Google Scholar 

  • Muthukumar H, Matheswaran M (2015) Amaranthus spinosus leaf extract mediated FeO nanoparticles: physicochemical traits, photocatalytic and antioxidant activity. ACS Sustain Chem Eng 3(12):3149–3156

    CAS  Google Scholar 

  • Namvar F, Azizi S, Ahmad M, Shameli K, Mohamad R, Mahdavi M, Tahir P (2015) Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum. Res Chem Intermed 41(8):5723–5730

    CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156(1–2):1–13

    CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2011a) Facile green synthesis of gold nanostructures by NADPH-dependent enzyme from the extract of Sclerotium rolfsii. Colloids Surf A Physicochem Eng Asp 380(1–3):156–161

    CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2011b) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interf Sci 169:59–79

    CAS  Google Scholar 

  • Navrotsky A (2003) Materials and nanotechnology. J Frankl Inst 340:263–268

    Google Scholar 

  • Nayak BK, Nanda A, Prabhakar V (2018) Biogenic synthesis of silver nanoparticle from wasp nest soil fungus, Penicillium italicum and its analysis against multi drug resistance pathogens. Biocatal Agric Biotechnol 16:412–418

    Google Scholar 

  • Nelson YM, Lion LW (2003) Formation of biogenic manganese oxides and their influence on the scavenging of toxic trace metals. In: Selim HM, Kingerly WL (eds) Geochemical and hydrological reactivity of heavy metals in soils. CRC Press, Boca Raton, pp 169–186

    Google Scholar 

  • Nogueira V, Lopes I, Rocha-Santos T, Santos AL, Rasteiro GM, Antunes F et al (2012) Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci Total Environ 424:344–350

    CAS  PubMed  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22

    CAS  PubMed  Google Scholar 

  • O’Reilly SE, Hochella MF (2003) Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochim Cosmochim Acta 67:4471–4487

    Google Scholar 

  • Oades JM (1989) An introduction to organic matter in mineral soils. In: Dixon JB, Weed SB (eds) Minerals in soil environments, 2nd edn. Soil Science Society of America, Madison, pp 89–159

    Google Scholar 

  • Ogi T, Saitoh N, Nomura T, Konishi Y (2010) Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract. J Nanopart Res 12(7):2531–2539

    CAS  Google Scholar 

  • Pachapur VL, Larios AD, Cledon M, Brar SK, Verma M, Surampalli RY (2016) Behavior and characterization of titanium dioxide and silver nanoparticles in soils. Sci Total Environ 563:933–943

    PubMed  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167

    CAS  Google Scholar 

  • Park Y, Hong Y, Weyers A, Kim Y, Linhardt R (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 5:69–78

    CAS  PubMed  Google Scholar 

  • Parker HL, Dodson JR, Budarin VL, Clark JH, Hunt AJ (2015) Direct synthesis of Pd nanoparticles on alginic acid and seaweed supports. Green Chem 17(4):2200–2207

    CAS  Google Scholar 

  • Parsons JG, Peralta-Videa JR, Gardea-Torresdey JL (2007) Use of plants in biotechnology: synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. Dev Environ Sci 5:463–485

    CAS  Google Scholar 

  • Patel V, Berthold D, Puranik P, Gantar M (2015) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 5:112–119

    Google Scholar 

  • Petla RK, Vivekanandhan S, Misra M, Mohanty AK, Satyanarayana N (2012) Soybean (Glycine Max) leaf extract based green synthesis of palladium nanoparticles. J Biomater Nanobiotechnol 3(1):14–19

    CAS  Google Scholar 

  • Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol 44(17):6532–6549

    CAS  PubMed  Google Scholar 

  • Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc 73(2):374–381

    PubMed  Google Scholar 

  • Pradhan A, Seena S, Pascoal C, Cássio F (2011) Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams? Microb Ecol 62(1):58–68

    CAS  PubMed  Google Scholar 

  • Prasad K, Jha AK, Prasad K, Kulkarni AR (2010) Can microbes mediate nano-transformation? Indian J Phys 84(10):1355–1360

    CAS  Google Scholar 

  • Prasad TVKV, Kambala V, Naidu R (2013) Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J Appl Phycol 25(1):177–182

    CAS  Google Scholar 

  • Quan X, Zhang X, Xu H (2015) In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation. Water Res 78:74–83

    CAS  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Current trends in phytosynthesis of metal nanoparticles (vol 28, pg 277, 2008). Crit Rev Biotechnol 29(1):78–78

    CAS  Google Scholar 

  • Rajarao R, Ferreira R, Sadi SHF, Khanna R, Sahajwalla V (2014) Synthesis of silicon carbide nanoparticles by using electronic waste as a carbon source. Mater Lett 120:65–68

    CAS  Google Scholar 

  • Rajput P, Anjum MH, Gupta T (2017) One year record of bioaerosols and particles concentration in Indo-Gangetic Plain: implications of biomass burning emissions to high-level of endotoxin exposure. Environ Pollut. 224:98–106. https://doi.org/10.1016/j.envpol.2017.01.045

  • Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R et al (2018a) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotechnol Monit Manag 9:76–84

    Google Scholar 

  • Rajput VD, Minkina T, Sushkova S, Tsitsuashvili V, Mandzhieva S, Gorovtsov A, Gromakova N (2018b) Effect of nanoparticles on crops and soil microbial communities. J Soils Sediments 18(6):2179–2187

    CAS  Google Scholar 

  • Ranjard L, Richaume A (2001) Quantitative and qualitative microscale distribution of bacteria in soil. Res Microbiol 152(8):707–716

    CAS  PubMed  Google Scholar 

  • Ranjard L, Nazaret S, Gourbière F, Thioulouse J, Linet P, Richaume A (2000) A soil microscale study to reveal the heterogeneity of Hg (II) impact on indigenous bacteria by quantification of adapted phenotypes and analysis of community DNA fingerprints. FEMS Microbiol Ecol 31(2):107–115

    CAS  PubMed  Google Scholar 

  • Rolim WR, Pelegrino MT, de Araújo Lima B, Ferraz LS, Costa FN, Bernardes JS et al (2019) Green tea extract mediated biogenic synthesis of silver nanoparticles: characterization, cytotoxicity evaluation and antibacterial activity. Appl Surf Sci 463:66–74

    CAS  Google Scholar 

  • Rousk J, Ackermann K, Curling SF, Jones DL (2012) Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS One 7:e34197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Das TK (2016) Effect of biosynthesized silver nanoparticles on the growth and some biochemical parameters of Aspergillus foetidus. J Environ Chem Eng 4(2):1574–1583

    CAS  Google Scholar 

  • Rubilar O, Rai M, Tortella G, Diez MC, Seabra AB, Durán N (2013) Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol Lett 35(9):1365–1375

    CAS  PubMed  Google Scholar 

  • Saif Hasan S, Singh S, Parikh RY, Dharne MS, Patole MS, Prasad BLV, Shouche YS (2008) Bacterial synthesis of copper/copper oxide nanoparticles. J Nanosci Nanotechnol 8(6):3191–3196

    Google Scholar 

  • Sangeetha G, Rajeshwari S, Rajendran V (2012) Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim Acta A 97:1140–1144

    Google Scholar 

  • Sanghi R, Verma P, Puri S (2011) Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Adv Chem Eng Sci 1(03):154

    CAS  Google Scholar 

  • Sarkar J, Ray S, Chattopadhyay D, Laskar A, Acharya K (2012) Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternata. Bioprocess Biosyst Eng 35(4):637–643

    CAS  PubMed  Google Scholar 

  • Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9(3):035012

    Google Scholar 

  • Scarano G, Morelli E (2003) Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum, Bohlin) in response to Cd. Plant Sci 165(4):803–810

    CAS  Google Scholar 

  • Schlich K, Hund-Rinke K (2015) Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils. Environ Pollut 196:321–330

    CAS  PubMed  Google Scholar 

  • Schloter M, Dilly O, Munch JC (2003) Indicators for evaluating soil quality. Agric Ecosyst Environ 98(1–3):255–262

    Google Scholar 

  • Schwertmann U (2008) Iron oxides. In: Chesworth W (ed) Encyclopedia of soil science. Springer, Dordrecht, pp 363–369

    Google Scholar 

  • Shah V, Jones J, Dickman J, Greenman S (2014) Response of soil bacterial community to metal nanoparticles in biosolids. J Hazard Mater 274:399–403

    CAS  PubMed  Google Scholar 

  • Shankar PD, Shobana S, Karuppusamy I, Pugazhendhi A, Ramkumar VS, Arvindnarayan S, Kumar G (2016) A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: formation mechanism and applications. Enzym Microb Technol 95:28–44

    CAS  Google Scholar 

  • Sharma D, Kanchi S, Bisetty K (2015) Biogenic synthesis of nanoparticles: a review. Arab J Chem

    Google Scholar 

  • Sheikhloo Z, Salouti M (2011) Intracellular biosynthesis of gold nanoparticles by the fungus Penicillium chrysogenum. Int J Nanosci Nanotechnol 7(2):102–105

    Google Scholar 

  • Shen MH, Yin YG, Booth A, Liu JF (2015) Effects of molecular weight-dependent physicochemical heterogeneity of natural organic matter on the aggregation of fullerene nanoparticles in mono-and di-valent electrolyte solutions. Water Res 71:11–20

    CAS  PubMed  Google Scholar 

  • Shipley HJ, Engates KE, Guettner AM (2011) Study of iron oxide nanoparticles in soil for remediation of arsenic. J Nanopart Res 13(6):2387–2397

    CAS  Google Scholar 

  • Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46(9):1800–1807

    CAS  Google Scholar 

  • Shotyk W (1988) Review of the inorganic geochemistry of peats and peatland waters. Earth Sci Rev 25(2):95–176

    CAS  Google Scholar 

  • Shrestha B, Acosta-Martinez V, Cox SB, Green MJ, Li S, Cañas-Carrell JE (2013) An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. J Hazard Mater 261:188–197

    CAS  PubMed  Google Scholar 

  • Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22(18):13710–13723

    CAS  Google Scholar 

  • Simonin M, Guyonnet JP, Martins JM, Ginot M, Richaume A (2015) Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. J Hazard Mater 283:529–535

    CAS  PubMed  Google Scholar 

  • Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B: Biointerfaces 57(1):97–101

    CAS  PubMed  Google Scholar 

  • Singh AV, Patil R, Anand A, Milani P, Gade WN (2010) Biological synthesis of copper oxide nano particles using Escherichia coli. Curr Nanosci 6(4):365–369

    CAS  Google Scholar 

  • Singh M, Kalaivani R, Manikandan S, Sangeetha N, Kumaraguru AK (2013) Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Appl Nanosci 3(2):145–151

    CAS  Google Scholar 

  • Singh P, Singh H, Kim YJ, Mathiyalagan R, Wang C, Yang DC (2016) Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzym Microb Technol 86:75–83

    CAS  Google Scholar 

  • Sinha S, Pan L, Chanda P, Sen SK (2009) Nanoparticles fabrication using ambient biological resources. J Appl Biosci 19:1113–1130

    Google Scholar 

  • Sivakumar P, Sivakumar P, Anbarasu K, Pandian K, Renganathan S (2013) Synthesis of silver nanorods from food industrial waste and their application in improving the keeping quality of milk. Ind Eng Chem Res 52(49):17676–17681

    CAS  Google Scholar 

  • Soltani Nejad M, Shahidi Bonjar GH, Khaleghi N (2015) Biosynthesis of gold nanoparticles using streptomyces fulvissimus isolate. Nanomed J 2(2):153–159

    Google Scholar 

  • Srinath BS, Rai VR (2015) Rapid biosynthesis of gold nanoparticles by Staphylococcus epidermidis: its characterisation and catalytic activity. Mater Lett 146:23–25

    CAS  Google Scholar 

  • Staniland SS (2007) Magnetosomes: bacterial biosynthesis of magnetic nanoparticles and potential biomedical applications. In: Nanotechnologies for the life sciences. WileyVCH Verlag GmbH & Co. KGaA

    Google Scholar 

  • Stephen JR, Macnaughtont SJ (1999) Developments in terrestrial bacterial remediation of metals. Curr Opin Biotechnol 10(3):230–233

    CAS  PubMed  Google Scholar 

  • Suganya KU, Govindaraju K, Kumar VG, Dhas TS, Karthick V, Singaravelu G, Elanchezhiyan M (2015) Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against gram positive organisms. Mater Sci Eng C 47:351–356

    Google Scholar 

  • Suppan S (2013) Nanomaterials in soil. Institute for Agriculture and Trade Policy

    Google Scholar 

  • Suresh AK, Pelletier DA, Wang W, Broich ML, Moon JW, Gu B et al (2011) Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater 7(5):2148–2152

    CAS  PubMed  Google Scholar 

  • Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta A Mol Biomol Spectrosc 114:144–147

    CAS  PubMed  Google Scholar 

  • Syed B, Prasad NM, Satish S (2016) Endogenic mediated synthesis of gold nanoparticles bearing bactericidal activity. J Microsc Ultrastruct 4(3):162–166

    PubMed  PubMed Central  Google Scholar 

  • Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32:287–328

    CAS  Google Scholar 

  • Theng BK, Yuan G (2008) Nanoparticles in the soil environment. Elements 4(6):395–399

    CAS  Google Scholar 

  • Tian H, Ghorbanpour M, Kariman K (2018) Manganese oxide nanoparticle-induced changes in growth, redox reactions and elicitation of antioxidant metabolites in deadly nightshade (Atropa belladonna L.). Ind Crop Prod 126:403–414

    CAS  Google Scholar 

  • Tripp SL, Pusztay SV, Ribbe AE, Wei A (2002) Self-assembly of cobalt nanoparticle rings. J Am Chem Soc 124(27):7914–7915

    CAS  PubMed  Google Scholar 

  • Van Gestel CA, Kool PL, Diez Ortiz M (2010) Metal-based nanoparticles in soil: new research themes should not ignore old rules and theories. Comments on the paper by Hu et al. 2010 “Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida”. Soil Biol Biochem 42:1892–1893

    Google Scholar 

  • Van Hoecke K, De Schamphelaere KA, Van der Meeren P, Smagghe G, Janssen CR (2011) Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environ Pollut 159(4):970–976

    PubMed  Google Scholar 

  • Van Horssen R, Ten Hagen TL, Eggermont AM (2006) TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist 11(4):397–408

    PubMed  Google Scholar 

  • Vanaja M, Annadurai G (2013) Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl Nanosci 3(3):217–223

    CAS  Google Scholar 

  • Varshney R, Bhadauria S, Gaur MS, Pasricha R (2010) Characterization of copper nanoparticles synthesized by a novel microbiological method. JOM-J Miner Met Mater Soc 62:102–104

    CAS  Google Scholar 

  • Varshney R, Bhadauria S, Gaur MS, Pasricha R (2011) Copper nanoparticles synthesis from electroplating industry effluent. Nano Biomed Eng 3(2):115–119

    CAS  Google Scholar 

  • Varshney R, Bhadauria S, Gaur MS (2012) A review: biological synthesis of silver and copper nanoparticles. Nano Biomed Eng 4(2):99–106

    CAS  Google Scholar 

  • Venkatesan J, Manivasagan P, Kim SK, Kirthi AV, Marimuthu S, Rahuman AA (2014) Marine algae-mediated synthesis of gold nanoparticles using a novel Ecklonia cava. Bioprocess Biosyst Eng 37(8):1591–1597

    CAS  PubMed  Google Scholar 

  • Vijayaraghavan K, Mahadevan A, Sathishkumar M, Pavagadhi S, Balasubramanian R (2011) Biosynthesis of Au (0) from Au (III) via biosorption and bioreduction using brown marine alga Turbinaria conoides. Chem Eng J 167(1):223–227

    CAS  Google Scholar 

  • Villalobos M, Bargar J, Sposito G (2005) Trace metal retention on biogenic manganese oxide nanoparticles. Elements 1(4):223–226

    CAS  Google Scholar 

  • Visaria RK, Griffin RJ, Williams BW, Ebbini ES, Paciotti GF, Song CW, Bischof JC (2006) Enhancement of tumor thermal therapy using gold nanoparticle–assisted tumor necrosis factor-α delivery. Mol Cancer Ther 5(4):1014–1020

    CAS  PubMed  Google Scholar 

  • Wang X, Zhang D, Pan X, Lee DJ, Al-Misned FA, Golam Mortuza M, Gadd GM (2017) Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere 170:266–273

    CAS  PubMed  Google Scholar 

  • Wang X, Zhang D, Qian H, Liang Y, Pan X, Gadd GM (2018a) Interactions between biogenic selenium nanoparticles and goethite colloids and consequence for remediation of elemental mercury contaminated groundwater. Sci Total Environ 613:672–678

    PubMed  Google Scholar 

  • Wang R, Du H, Wang Y, Wang D, Sun Q, Zhou D (2018b) Retention of silver nanoparticles and silver ion to natural soils: effects of soil physicochemical properties. J Soils Sediments 18(7):2491–2499

    CAS  Google Scholar 

  • Wang X, Song W, Qian H, Zhang D, Pan X, Gadd GM (2018c) Stabilizing interaction of exopolymers with nano-Se and impact on mercury immobilization in soil and groundwater. Environ Sci Nano 5:456–466

    CAS  Google Scholar 

  • Wang X, Pan X, Gadd GM (2019a) Soil dissolved organic matter affects mercury immobilization by biogenic selenium nanoparticles. Sci Total Environ 658:8–15

    CAS  PubMed  Google Scholar 

  • Wang X, Pan X, Gadd GM (2019b) Immobilization of elemental mercury by biogenic Se nanoparticles in soils of varying salinity. Sci Total Environ 668:303–309

    CAS  PubMed  Google Scholar 

  • Wang X, Wang S, Pan X, Gadd GM (2019c) Heteroaggregation of soil particulate organic matter and biogenic selenium nanoparticles for remediation of elemental mercury contamination. Chemosphere 221:486–492

    CAS  PubMed  Google Scholar 

  • Watson JHP, Ellwood DC, Deng Q, Mikhalovsky S, Hayter CE, Evans J (1995) Heavy metal adsorption on bacterially produced FeS. Miner Eng 8(10):1097–1108

    CAS  Google Scholar 

  • Whitley AR, Levard C, Oostveen E, Bertsch PM, Matocha CJ, von der Kammer F, Unrine JM (2013) Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging and sewage sludge amendment. Environ Pollut 182:141–149

    CAS  PubMed  Google Scholar 

  • Wu J, Zhang H, Shao L, He P (2012) Fluorescent characteristics and metal binding properties of individual molecular weight fractions in municipal solid waste leachate. Environ Pollut 162:63–71

    CAS  PubMed  Google Scholar 

  • Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem 86:24–33

    CAS  Google Scholar 

  • Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37(11):2099–2120

    CAS  PubMed  Google Scholar 

  • Yallappa S, Manjanna J, Dhananjaya BL (2015) Phytosynthesis of stable Au, Ag and Au-Ag alloy nanoparticles using J. sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta A Mol Biomol Spectrosc 137:236–243

    CAS  PubMed  Google Scholar 

  • Yuan G, Percival HJ, Theng BKG, Parfitt RL (2002) Sorption of copper and cadmium by allophane-humic complexes. In: Violante A, Huang PM, Bollag J-M, Gianfreda L (eds) Developments in soil science, vol 28A, pp 37–47

    Google Scholar 

  • Yung MM, Kwok KW, Djurišić AB, Giesy JP, Leung KM (2017) Influences of temperature and salinity on physicochemical properties and toxicity of zinc oxide nanoparticles to the marine diatom Thalassiosira pseudonana. Sci Rep 7(1):3662

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Gao G, Qian Q, Cui D (2012) Chloroplasts-mediated biosynthesis of nanoscale Au-Ag alloy for 2-butanone assay based on electrochemical sensor. Nanoscale Res Lett 7(1):475

    PubMed  PubMed Central  Google Scholar 

  • Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernandez-Viezcas JA et al (2012) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Ghorbanpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khalkhal, K., Asgari Lajayer, B., Ghorbanpour, M. (2020). An Overview on the Effect of Soil Physicochemical Properties on the Immobilization of Biogenic Nanoparticles. In: Ghorbanpour, M., Bhargava, P., Varma, A., Choudhary, D. (eds) Biogenic Nano-Particles and their Use in Agro-ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2985-6_8

Download citation

Publish with us

Policies and ethics