Skip to main content

Use of Nanotechnology in Quality Improvement of Economically Important Agricultural Crops

  • Chapter
  • First Online:
Biogenic Nano-Particles and their Use in Agro-ecosystems

Abstract

Increased crop production while maintaining sustainability in agroecosystems is the thrust of modern technologies. Biotic and abiotic stresses are the major challenges faced by agriculture in times of climate change, emerging pests and diseases and crop behaviour. Hence, development of agricultural technology becomes necessary to cope with these challenges. Though nanobiotechnology has demonstrated envious benefits in agriculture and food processing, its advancements remain at the laboratory and pilot scale. The Indian government has supported Nano Mission in last decade and supports expansion and commercial applications of nanotechnology by encouraging participation of private sector investments. The concerns related to the availability and synthesis of nanomaterials, toxicity and health hazards associated with nanoparticles, besides regulatory framework, are major constrains in their application from the Indian perspective. Hence, the current chapter focuses on the use of nanotechnology in quality improvement of economically important agricultural crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almutairi, Alharbi A (2015) Effect of silver nanoparticles on seed germination of crop plants. J Adv Agric 4:280–285

    Article  Google Scholar 

  • Anusuya P, Nagaraj R, Janavi GJ, Subramanian KS, Paliyath G, Subramanian J (2016) Pre-harvest sprays of hexanal formulation for extending retention and shelf life of mango fruits. Sci Hortic 211:231–240

    Google Scholar 

  • Bortolin A, Aouada FA, Mattoso LH, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61(31):7431–7439

    Article  CAS  Google Scholar 

  • Chinnamuthu C, Kokiladevi E (2007) Weed management through nanoherbicides. In: Chinnamuthu CR, Chandrasekaran B, Ramasamy C (eds) Application of nanotechnology in agriculture, vol 10. Tamil Nadu Agricultural University, Coimbatore, pp 978–971

    Google Scholar 

  • Chowdappa P, Gowda S (2013) Nanotechnology in crop protection: status and scope. Pest Manag Hortic Ecosyst 19(2):131–151

    Google Scholar 

  • Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84(1):99–105

    Article  Google Scholar 

  • Dhokev S, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3(1):e1. https://doi.org/10.4081/nd.2013.e1

    Article  CAS  Google Scholar 

  • Eichert T, Goldbach HE (2008) Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces further evidence for a stomatal pathway. Physiol Plant 132:491–502. https://doi.org/10.1111/j.1399-3054.2007.01023.x

    Article  CAS  PubMed  Google Scholar 

  • El-bendary H, El-Helaly A (2013) First record nanotechnology in agricultural: Silica nano-particles a potential new insecticide for pest control. Appl Sci Rep 4(3):241–246. E-ISN: 2310–2940

    Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252

    Article  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5(4):382–386. https://doi.org/10.1016/j.nano.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803

    Article  CAS  Google Scholar 

  • Gopinath V, Velusamy P (2013) Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim Acta A Mol Biomol Spectrosc 106:170–174. https://doi.org/10.1016/j.saa.2012.12.087

    Article  CAS  PubMed  Google Scholar 

  • Grillo R, Rosa AH, Fraceto LF (2015) Engineered nanoparticles and organic matter: a review of the state-of-the-art. Chemosphere 119:608–619

    Article  CAS  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215. https://doi.org/10.1016/j.micres.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  • Hoe PT, Mai NC, Lien LQ, Ban NK, Minh CV, Chau NH et al (2018) Germination responses of soybean seeds under Fe, ZnO, Cu and Co nanoparticle treatments. Int J Agric Biol 20:562–1568

    Google Scholar 

  • Hussain A, Ali S, Rizwan M, Zia Ur Rehman M, Javed MR, Imran M, Chatha SAS, Nazir R (2018) Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ Pollut 242(PtB):1518–1526

    Article  CAS  Google Scholar 

  • Jaidev LR, Narasimha G (2010) Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf B: Biointerfaces 81(2):430–433

    Article  CAS  Google Scholar 

  • Jincy M, Djanaguiraman M, Jeyakumar P, Subramanian KS, Jayasankar S, Paliyath G (2017) Inhibition of phospholipase D enzyme activity through hexanal leads to delayed mango (Mangifera indica L.) fruit ripening through changes in oxidants and antioxidant enzymes activity. Sci Hortic 218:316–325

    Article  CAS  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043. https://doi.org/10.1094/PDIS-93-10-1037

    Article  CAS  PubMed  Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    Article  CAS  Google Scholar 

  • Kanimozhi V, Chinnamuthu C (2012) Engineering core/hallow shell nanomaterials to load herbicide active ingredient for controlled release. Res J Nanosci Nanotechnol 2(2):58–69

    Article  Google Scholar 

  • Karunakaran G, Suriyaprabha R, Rajendran V, Kannan N (2015) Effect of contact angle, zeta potential and particles size on the in vitro studies of Al2O3 and SiO2 nanoparticles. IET Nanobiotechnol 9(1):27–34. https://doi.org/10.1049/iet-nbt.2013.0067

    Article  PubMed  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  Google Scholar 

  • Komarneni S (2010) Potential of nanotechnology in environmental soil science. In: 9th international conference of the East and Southeast Asia federation of soil science societies

    Google Scholar 

  • Kumar S, Bhanjana G, Sharma A, Sidhu MC, Dilbaghi N (2014) Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr Polym 101:1061–1067

    Google Scholar 

  • Kumar S, Bhanjana G, Sharma A, Dilbaghi N, Sidhu MC, Kim KH (2017) Development of nanoformulation approaches for the control of weeds. Sci Total Environ 15(586):1272–1278. https://doi.org/10.1016/j.scitotenv.2017.02.138.

    Article  Google Scholar 

  • Kumar R, Ashfaq M, Verma N (2018) Synthesis of novel PVA–starch formulation-supported Cu–Zn nanoparticle carrying carbon nanofibers as a nanofertilizer: controlled release of micronutrients. J Mater Sci 53:7150–7164. https://doi.org/10.1007/s10853-018-2107-9

    Article  CAS  Google Scholar 

  • Lai F, Wissing SA, Müller RH, Fadda AM (2006) Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS PharmSciTech 7(1):E10–E18. https://doi.org/10.1208/pt070102

    Article  PubMed  PubMed Central  Google Scholar 

  • Larue C, Veronesi G, Flank AM, Surble S, Herlin-Boime N, Carrière M (2012) Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J Toxicol Environ Health A 75:722–734

    Article  CAS  Google Scholar 

  • Lee KJ, Park SH, Govarthanan MA, Hwang PH, Seo YS, Cho M, Lee WH, Lee JY, Kannan SK, Taek B (2013) Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Mater Lett 105:128–131. https://doi.org/10.1016/j.matlet.2013.04.076

    Article  CAS  Google Scholar 

  • León-Silva S, Fernández-Luqueño F, López-Valdez F (2018) Engineered nanoparticles: are they an inestimable achievement or a health and environmental concern? In: López-Valdez F, Fernández-Luqueño F (eds) Agricultural nanobiotechnology: modern agriculture for a sustainable future. Springer Nature, Cham, pp 183–212. https://doi.org/10.1007/978-3-319-96719-6_10

    Chapter  Google Scholar 

  • Li Z, Zhang Y (2010) Use of surfactant-modified zeolite to carry and slowly release sulfate. Desalin Water Treat 21(1–3):73–78

    Article  Google Scholar 

  • Li LS, Hu J, Yang W, Alivisatos AP (2001) Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett 1:349

    Article  CAS  Google Scholar 

  • Liu Y (2003) Nanosensors, http://www.slideserve.com/kim-johnston/nanosensors dt. 3 Oct 2016.

  • Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41:2268–2275

    Article  CAS  Google Scholar 

  • Lu J, Bowles M (2013) How will nanotechnology affect agricultural supply chains? Int Food Agribus Manag Rev 16(2):21–42

    Google Scholar 

  • Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–172

    CAS  Google Scholar 

  • Lv J, Zhang S, Luo L, Zhang J, Yangc K, Christie P (2015) Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ Sci Nano 2:68–77

    Article  CAS  Google Scholar 

  • Mala R, Arunachalam P, Sivsankari M (2012) Synergistic bactericidal activity of silver nanoparticles and ciprofloxacin against phytopathogens. J Cell Tissue Res 12:3249–3254

    CAS  Google Scholar 

  • Manikandan A, Subramanian K (2014) Fabrication and characterisation of nanoporous zeolite based N fertilizer. Afr J Agric Res 9(2):276–284

    Article  Google Scholar 

  • Mishra S, Singh BR, Singh A, Keshwani C, Naqvi AH, Singh HB (2014a) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9(5):e97881

    Article  Google Scholar 

  • Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH et al (2014b) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9(5):e97881. https://doi.org/10.1371/journal.pone.0097881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed N, Mady I, Wael AM, Ahmed S, Shoreit AAFMSM (2014) Antimicrobial activity of latex silver nanoparticles using Calotropis procera. Asian Pac J Trop Biomed 4(11):876–883. https://doi.org/10.12980/APJTB.4.201414B216

    Article  CAS  Google Scholar 

  • Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5:2229–2232

    Google Scholar 

  • Narayanan K, Park H (2014) Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur J Plant Pathol 140(2):185–192. https://doi.org/10.1007/s10658-014-0399-4

    Article  CAS  Google Scholar 

  • Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF (2014) Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215

    Article  CAS  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293. https://doi.org/10.1007/s00253-012-3969-4

    Article  CAS  PubMed  Google Scholar 

  • Raliya R, Tarafdar J (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2(1):48–57. https://doi.org/10.1007/s40003-012-0049-z

    Article  CAS  Google Scholar 

  • Raliya R, Franke C, Chavalmane S, Nair R, Reed N, Biswas P (2016) Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci 26(7):1288. https://doi.org/10.3389/fpls.2016.01288

    Article  Google Scholar 

  • Rayalu SS, Bansiwal AK, Meshram SU, Labhsetwar N, Devotta S (2006) Fly ash based zeolite analogues: versatile materials for energy and environment conservation. Catal Surv Jpn 10:74

    Article  CAS  Google Scholar 

  • Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124. https://doi.org/10.1046/j.1365-3040.2003.00950.x

    Article  Google Scholar 

  • Safarpour H, Safarnejad R, Tabatabaei M, Mohsenifar A, Rad F, Shahryari F (2012) Detection of Polymyxa betae; the transmitting agent of rhizomania disease of sugar beet, with quantum dots FRET-based biosensor. Can J Plant Pathol 34(4):507–515

    Article  Google Scholar 

  • Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192

    Article  CAS  Google Scholar 

  • Schönherr J (2002) A mechanistic analysis of penetration of glyphosate salts across astomatous cuticular membranes. Pest Manag Sci 58:343–351. https://doi.org/10.1002/ps.462

    Article  CAS  PubMed  Google Scholar 

  • Shojaei TR, Salleh MA, Sijam K, Rahim RA, Mohsenifar A, Safarnejad R, Tabatabaei M (2016) Detection of Citrus tristeza virus by using fluorescence resonance energy transfer-based biosensor. Spectrochim Acta A Mol Biomol Spectrosc 169:216–222. https://doi.org/10.1016/j.saa.2016.06.052

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds mill.). Saudi J Biological Sci 21(1):13–17. https://doi.org/10.1016/j.sjbs.2013.04.005

    Article  CAS  Google Scholar 

  • Singh S, Singh M, Agrawal V, Kumar A (2010) An attempt to develop surface plasmon resonance based immunosensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immuno-dipstick test. Thin Solid Films 519:1156–1159. https://doi.org/10.1016/j.tsf.2010.08.061

    Article  CAS  Google Scholar 

  • Singh MD, Chirag G, Patidar OP, Meena HM, Prakasha G, Vishwajith (2017) Nano-fertilizers is a new way to increase nutrients use efficiency in crop production. IJAS 97:3831–3833

    Google Scholar 

  • Srivastava G, Das CK, Das A, Singh SK, Roy M, Kim H, Sethy N, Kumar A, Sharma R, Singh S, Philip D, Das M (2014) Seed treatment with iron pyrite (FeS2) nanoparticles increase the production of spinach. RSC Adv 4:58495–58504. https://doi.org/10.1039/C4RA06861K

    Article  CAS  Google Scholar 

  • Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66(6):577–579

    CAS  PubMed  Google Scholar 

  • Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS (2015) Nano-fertilizers for balanced crop nutrition. In: Rai M et al (eds) Nanotechnologies in food and agriculture, vol 3, 1st edn. Springer, Cham, pp 69–80

    Google Scholar 

  • Sun D, Hussain HI, Yi Z, Siegele R, Cresswell T, Kong L (2014) Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33:1389–1402

    Article  CAS  Google Scholar 

  • Tarafdar J (2012) Perspectives of nanotechnological applications for crop production. NAAS News 12:8–11

    Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC (2012) Xylem and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441

    Article  CAS  Google Scholar 

  • Wilson MA, Tran NH, Milev AS, Kannangara GSK, Volk H, Lu GQM (2008) Nanomaterials in soils. Geoderma 146(1–2):291–302

    Article  CAS  Google Scholar 

  • Xue J, Luo Z, Li P, Ding Y, Cui Y, Wu Q (2014) A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles. Sci Rep 4:5408. https://doi.org/10.1038/srep05408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Liu C, Gao F et al (2007) Role of biosynthesized nanoparticles (NPs) in agriculture. Biol Trace Elem Res 119:77. https://doi.org/10.1007/s12011-007-0046-4

    Article  CAS  PubMed  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162

    Article  CAS  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu C, Liao C, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79:513–516

    Article  Google Scholar 

  • Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernandez-Viezcas JA (2012) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bajpai, A., Jadhav, K., Muthukumar, M., Kumar, S., Srivatava, G. (2020). Use of Nanotechnology in Quality Improvement of Economically Important Agricultural Crops. In: Ghorbanpour, M., Bhargava, P., Varma, A., Choudhary, D. (eds) Biogenic Nano-Particles and their Use in Agro-ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2985-6_3

Download citation

Publish with us

Policies and ethics