Skip to main content

Nanotechnology and Nutrigenomics

  • Chapter
  • First Online:
Biogenic Nano-Particles and their Use in Agro-ecosystems

Abstract

The rising popularity and attractive applications of nanotechnologies have impacted all areas of research, including science, agriculture, and health care. Nanoparticles are finding great potential as delivery systems to specific targets in living organisms. Recent advances in food science have revealed that food-derived bioactives significantly influence changes in the genome, epigenome, proteome, and metabolome. This concept is termed “nutrigenomics.” The research in nutrigenomics is fast emerging and explored for the prevention or therapy of various lifestyle-associated disorders such as diabetes, cardiovascular diseases, cancer, and others. The major obstacle in achieving the efficacy from the bioactives is their bioavailability in the plasma and/or at the target site following consumption. The advent of various nanotechnology methods have contributed to promising tools such as nanodelivery systems, including nanocapsules, nanospheres, and biogenic nanoparticles that can enhance the bioavailability of bioactive compounds. This chapter focuses on applications of nanotechnologies in nutrigenomics with a particular focus on their applications for prevention or treatment of certain metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed J, Mulla MZ, Arfat YA (2016) Thermo-mechanical, structural characterization and antibacterial performance of solvent casted polylactide/cinnamon oil composite films. Food Control 69:196–204

    CAS  Google Scholar 

  • Aliabadi HM, Lavasanifar A (2006) Polymeric micelles for drug delivery. Expert Opin Drug Deliv 3:139–162

    CAS  PubMed  Google Scholar 

  • Bajpai VK et al (2018) Prospects of using nanotechnology for food preservation, safety, and security. J Food Drug Anal 26(4):1201–1214

    CAS  PubMed  Google Scholar 

  • Basri M, Kassim MA, Mohamad R, Ariff AB (2013) Optimization and kinetic study on the synthesis of palm oil ester using Lipozyme TL IM. J Mol Catal B Enzym 85:214–219

    Google Scholar 

  • Benito AM et al (1998) Carbon nanotubes production by catalytic pyrolysis of benzene. Carbon 36:681–683

    CAS  Google Scholar 

  • Bhatia S (2016) Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural polymer drug delivery systems. Springer, Cham, pp 33–93

    Google Scholar 

  • Binupriya AR et al (2010) Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater 177(1–3):539–545

    CAS  PubMed  Google Scholar 

  • Carlos-Reyes A et al (2019) Dietary compounds as epigenetic modulating agents in cancer. Front Genet 10:79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran SP et al (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol Prog 22(2):577–583

    CAS  PubMed  Google Scholar 

  • Chen H, Weiss J, Shahidi F (2006) Nanotechnology in nutraceutical and functional foods. Food Technol 60(3):30–36

    CAS  Google Scholar 

  • Costa NMB, Rosa COB (2011) Functional foods: bioactive components and physiological effects. 1 Reprint. Rúbio, Rio de Janeiro

    Google Scholar 

  • Cozzolino SMF, Cominetti C (2013) Biochemical and physiological bases of nutrition in different stages of life in health and disease, 1st edn. Monole, São Paulo

    Google Scholar 

  • Crespo L et al (2005) Peptide, and amide bond-containing dendrimers. Chem Rev 105(5):1663–1681

    CAS  PubMed  Google Scholar 

  • Dalmiel L, Vargas T, Molina AR (2012) Nutritional genomics for the characterization of the effect of bioactive molecules in lipid metabolism and related pathways. Electrophoresis 33(15):2266–2289

    Google Scholar 

  • Dameron CT et al (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338(6216):596

    CAS  Google Scholar 

  • Dhaka V, Gulia N, Ahlawat KS, Khatkar BS (2011) Trans fats—sources, health risks and alternative approach - a review. J Food Sci Technol 48(5):534–541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhillon VS, Shahid M, Husain SA (2007) Associations of MTHFR DNMT3b 4977 bp deletion in mtDNA and GSTM1 deletion, and aberrant CpG island hypermethylation of GSTM1 in nonobstructive infertility in Indian men. MHR: Basic science of reproductive medicine 13(4):213–222

    CAS  PubMed  Google Scholar 

  • Đorđević SM et al (2015) Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: design, characterization and in vivo pharmacokinetic evaluation. IJ Pharm 0493(1–2):40–54

    Google Scholar 

  • Douglas T, Strable E, Willits D, Aitouchen A, Libera M, Young M (2002) Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv Mater 14(6):415–418

    CAS  Google Scholar 

  • Ezhilarasi PN et al (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6(3):628–647

    CAS  Google Scholar 

  • Feng T et al (2017) Liposomal curcumin and its application in cancer. Int J Nanomed 12:6027–6044

    CAS  Google Scholar 

  • Feynman R (1960) There’s plenty of room at the bottom (reprint from speech given at annual meeting of the American Physical Society). Eng Sci 23:22–36

    Google Scholar 

  • Francis MF et al (2005) Engineering polysaccharide-based polymeric micelles to enhance permeability of cyclosporin A across Caco-2 cells. Pharm Res 22:209–219

    CAS  PubMed  Google Scholar 

  • Gade AK et al (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2(3):243–247

    Google Scholar 

  • Gogotsia Y, Libera JA (2000) Hydrothermal synthesis of multiwall carbon nanotubes. J Mater Res 15:2591–2259

    Google Scholar 

  • Gokulakrishnan R, Ravikumar S, Raj JA (2012) In vitro antibacterial potential of metal oxide nanoparticles against antibiotic resistant bacterial pathogens. Asian Pac J Trop Dis 2(5):411–413

    CAS  Google Scholar 

  • Grumezescu (2017) Multifunctional systems for combined delivery, biosensing and diagnostics, 1st edn Book

    Google Scholar 

  • Hawker CJ, Frechet JMJ (1990) Preparation of polymers with controlled molecular architecture: a new convergent approach to dendritic macromolecules. J Am Chem Soc 112:7638–7647

    CAS  Google Scholar 

  • Hosomi R, Fukunaga K, Arai H, Kanda S, Nishiyama T, Yoshida M (2013) Effect of combination of dietary fish protein and fish oil on lipid metabolism in rats. J Food Sci Technol 50(2):266–274

    CAS  PubMed  Google Scholar 

  • Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4(165):1–7

    Google Scholar 

  • Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11(8):2079

    CAS  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650

    CAS  Google Scholar 

  • Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400(1–3):396–414

    CAS  PubMed  Google Scholar 

  • Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem

    Google Scholar 

  • Klajnert B, Bryszewska M (2001) Dendrimers: properties and applications. Acta Biochim Pol 48(1):199–208

    CAS  PubMed  Google Scholar 

  • Kumari A et al (2010) Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf B Biointerfaces 80(2):184–192

    CAS  PubMed  Google Scholar 

  • Laurent S et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    CAS  PubMed  Google Scholar 

  • Lee ES, Na K, Bae YH (2003) Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release 9:103–113

    Google Scholar 

  • Liu SQ et al (2003) Preparation and characterization of temperature-sensitive poly(N-isopropyl acrylamide)-b-poly(d,l-lactide) microspheres for protein delivery. Biomacromolecules 46:1784–1793

    Google Scholar 

  • Ma RZ et al (2000) The morphology changes of carbon nanotubes under laser irradiation. Carbon 38:636–638

    CAS  Google Scholar 

  • Madaan K et al (2014) Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 6(3):139

    PubMed  PubMed Central  Google Scholar 

  • Mansoori GA (2002) Advances in atomic & molecular nanotechnology, United Nations Tech Monitor; UN-APCTT Tech Monitor, pp 53–59

    Google Scholar 

  • Mao C (2003) Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci 100(12):6946–6951

    CAS  PubMed  Google Scholar 

  • Mead MN (2007) Nutrigenomics: the genome–food interface. Environ Health Perspect 115(12):582–589

    Google Scholar 

  • Mourato A, Gadanho M, Lino AR, Tenreiro R (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl 2011:8

    Google Scholar 

  • Mourya VK, Inamdar NN, Choudhari YM (2011) Chitooligosaccharides: synthesis, characterization and applications. Polym Sci Ser A 53(7):583–612

    CAS  Google Scholar 

  • Nakajima M (2005) Development of nanotechnology and materials for innovative utilization of biological functions. In: Proceedings of the 34th United States and Japan Natural Resources (UJNR) food and agriculture panel, Susono, Japan

    Google Scholar 

  • Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112(3):630–648

    CAS  PubMed  Google Scholar 

  • Niu L et al (2013) Folate-conjugated PEG on single-walled carbon nanotubes for targeting delivery of doxorubicin to cancer cells. Macromol Biosci 13(6):735–744

    CAS  PubMed  Google Scholar 

  • Parveen K, Banse V, Ledwani L (2016) Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conf Proc 1724:020048

    Google Scholar 

  • Patil CD et al (2012) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110(5):1815–1822

    PubMed  Google Scholar 

  • Poole CP Jr, Owens FJ (2003) Introduction to nanotechnology. Wiley, Hoboken

    Google Scholar 

  • Prasad K, Jha AK, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2(5):248

    CAS  PubMed Central  Google Scholar 

  • Prasad SSSV, Kumar SSJ, Kumar PU, Qadri SS, Vajreswari A (2010) Dietary fatty acid composition alters 11β-hydroxysteroid dehydrogenase type 1 gene expression in rat retroperitoneal white adipose tissue. Lipids Health Dis 9(111):1–5

    Google Scholar 

  • Qian D, Wagner GJ, Liu WK (2002) Mechanics of carbon nanotubes. Appl Mech Rev 55:495–433

    Google Scholar 

  • Rahman MBA, Huan QY, Tejo BA, Basri M, Salleh AB, Rahman RNZA (2009) Self-assembly formation of palm-based esters nano-emulsion: a molecular dynamics study. Chem Phys Lett 480(4–6):220–224

    Google Scholar 

  • Sales NM, Pelegrini PB, Goersch MC (2014) Nutrigenomics: definitions and advances of this new science. J Nutr Metab 2014:202759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salouti M, Derakhshan FK (2019) Phytosynthesis of nanoscale materials. In: Advances in phytonanotechnology, From synthesis to application. Elsevier, pp 45–121

    Google Scholar 

  • Seshadri S, Saranya K, Kowshik M (2011) Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Prog 27(5):1464–1469

    CAS  PubMed  Google Scholar 

  • Shankar SS et al (2004) Biosynthesis of silver and gold nanoparticles from extracts of different parts of the geranium plant. Appl Nano Sci 1:69–77

    Google Scholar 

  • Sharifi F et al (2019) Generation of liposomes using a supercritical carbon dioxide eductor vacuum system: optimization of process variables. J CO2 Util 29:163–171

    CAS  Google Scholar 

  • Sharma N (2012) Exploitation of marine bacteria for production of gold nanoparticles. Microb Cell Factories 11(1):86

    CAS  Google Scholar 

  • Sharma T, Velmurugan N, Patel P, Chon BH, Sangwai JS (2015) Use of oil-in-water Pickering emulsion stabilized by nanoparticles in combination with polymer flood for enhanced oil recovery. Pet Sci Technol 33(17–18):1595–1604

    CAS  Google Scholar 

  • Shenton W et al (1999) Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11(3):253–256

    CAS  Google Scholar 

  • Shyam Mohapatra, et al., (2019) Applications of targeted nano drugs and delivery systems, nanoscience and nanotechnology in drug delivery, Micro and Nano Technologies Book

    Google Scholar 

  • Singh H (2016) Nanotechnology applications in functional foods; opportunities and challenges. Prev Nutr Food Sci 21(1):1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh K, Jaiswal D (2011) Human male infertility. Reprod Sci 18(5):418–425

    PubMed  Google Scholar 

  • Sinha R et al (2003) Cancer risk and diet in India. J Postgrad Med 49:222–228

    CAS  PubMed  Google Scholar 

  • Slawson RM et al (1994) Silver resistance in Pseudomonas stutzeri. Biometals 7(1):30–40

    CAS  PubMed  Google Scholar 

  • Srinivas PR et al (2010) Nanotechnology research: applications in nutritional sciences. J Nutr 140(1):119–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262

    CAS  PubMed  Google Scholar 

  • Thompkinson DK, Bhavana V, Kanika P (2014) Dietary approaches for management of cardio-vascular health- a review. J Food Sci Technol 51(10):2318–2330

    CAS  PubMed  Google Scholar 

  • Wang Y, Xia Y (2004) Bottom-up and top-down approaches to the synthesis of Monodispersed spherical colloids of low melting-point metals. Nano Lett 4(10):2047–2050

    CAS  Google Scholar 

  • Zeng H et al (1998) Synthesis of various forms of carbon nanotubes by AC arc discharge. Carbon 36:259–261

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, CSIR-CFTRI, Mysuru, for providing facilities and infrastructure. The corresponding author thanks the Department of Biotechnology and the Science and Engineering Research Board (SERB), Department of Science and Technology, New Delhi, for providing funds in the form of Ramalingaswami fellowship and extramural grant, respectively.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Janhavi, P., Natasha, J., Neelam, R., Ravindra, P.V. (2020). Nanotechnology and Nutrigenomics. In: Ghorbanpour, M., Bhargava, P., Varma, A., Choudhary, D. (eds) Biogenic Nano-Particles and their Use in Agro-ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2985-6_19

Download citation

Publish with us

Policies and ethics