Skip to main content

Nanomaterials: Emerging Trends and Future Prospects for Economical Agricultural System

  • Chapter
  • First Online:
Biogenic Nano-Particles and their Use in Agro-ecosystems

Abstract

In developing countries, when it comes to national economy, one of the important building blocks is agriculture. The food production rate has risen, which has a substantial role in a country’s gross domestic production. The application of pesticides and fertilizers determines the rate of food production. Agricultural growth and food production are very much dependent on parameters like soil health, water availability, climate change, etc. Since the world population is expanding at an alarming rate, the food production needs to be enhanced, and adverse agricultural conditions have to be regulated. Supporting the massive increase in population, the sustainable development of agriculture is required. With latest advancements, new avenues have been opened up by nanotechnology in the field of food processing and crop improvement. The present chapter highlights the role and emergence of nanomaterials in agriculture system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnihotri S, Mukherji S, Mukherji S (2012) Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl Nanosci 2(3):179–188

    CAS  Google Scholar 

  • Aguilar-Méndez MA, San Martín-Martínez E, Ortega-Arroyo L, Cobián-Portillo G, Sánchez-Espíndola E (2011) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res 13(6):2525–2532

    Google Scholar 

  • Aravinthan A, Govarthanan M, Selvam K, Praburaman L, Selvankumar T, Balamurugan R, Kim JH (2015) Sunroot mediated synthesis and characterization of silver nanoparticles and evaluation of its antibacterial and rat splenocyte cytotoxic effects. Int J Nanomedicine 10:1977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker S, Volova T, Prudnikova SV, Satish S, Prasad N (2017) Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environ Toxicol Phar 53:10–17

    CAS  Google Scholar 

  • Ball P (2002) Natural strategies for the molecular engineer. Nanotechnology 13(5):R15

    CAS  Google Scholar 

  • Barik TK, Kamaraju R, Gowswami A (2012) Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitol Res 111(3):1075–1083

    PubMed  Google Scholar 

  • Ben-shalom N, Ardi R, Pinto R, Aki C, Fallik E (2003) Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Prot 22:285–290

    CAS  Google Scholar 

  • Bergeson LL (2010) Nanosilver: US EPA’s pesticide office considers how best to proceed. Environ Qual Manag 19(3):79–85

    Google Scholar 

  • Bharati S, Suresh A (2017) Review on nano-catalyst from waste for production of biofuel-via-bioenergy. In: Biofuels and bioenergy (BICE2016). Springer, Cham, pp 25–32

    Google Scholar 

  • Bhatkhande DS, Pangarkar VG, Beenackers AA (2002) Photocatalytic degradation for environmental applications – a review. J Chem Technol Biotechnol 77(1):102–116

    CAS  Google Scholar 

  • Bhor G, Maskare S, Hinge S, Singh L, Nalwade A (2014) Synthesis of silver nanoparticles by using leaflet extract of Nephrolepis exaltata L and evaluation of antibacterial activity against human and plant pathogenic bacteria. Asian J Pharm Technol 02(07):6

    Google Scholar 

  • Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20(4):433–441

    CAS  PubMed  Google Scholar 

  • Celis R, Adelino MA, Hermosín MC, Cornejo J (2012) Montmorillonite-chitosan bionanocomposites as adsorbents of the herbicide clopyralid in aqueous solution and soil/water suspensions. J Hazard Mater 209–210:67–76

    PubMed  Google Scholar 

  • Charudattan R, Hiebert E (2007) A plant virus as a bioherbicide for tropical soda apple, Solanum viarum. Outlooks Pest Manag 18(4):167–171

    Google Scholar 

  • Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96(1/6):17–31

    Google Scholar 

  • Chowdhury S, Basu A, Kundu S (2014) Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria. Nanoscale Res Lett 9(1):65

    Google Scholar 

  • Cioffi N, Ditaranto N, Torsi L, Picca RA, Sabbatini L, Valentini A, Novello G, Tantillo T, Zambonin PG, Bleve-Zacheo (2005) Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Anal Bioanal Chem 381(3):607–616

    CAS  PubMed  Google Scholar 

  • Corradini E, De Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4(8):509–515

    CAS  Google Scholar 

  • Cui HF, Wu WW, Li MM, Song X, Lv Y, Zhang TT (2018) A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides. Biosens Bioelectron 99:223–229

    CAS  PubMed  Google Scholar 

  • Davidson D, Gu FX (2012) Materials for sustained and controlled release of nutrients and molecules to support plant growth. J Agric Food Chem 60(4):870–876

    CAS  PubMed  Google Scholar 

  • Devi PV, Duraimurugan P, Chandrika KSVP (2019) Bacillus thuringiensis-based nanopesticides for crop protection. In: Nano-biopesticides today and future perspectives. Academic, London, pp 249–260

    Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26(6):913–924

    CAS  PubMed  Google Scholar 

  • Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci Nanosci Nanotechnol 3(3):033002

    Google Scholar 

  • Donaldson K, Stone V, Tran CL, Kreylin W, Borm PJA (2004) Nanotoxicology. Occup Environ Med 61:727–728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubchak S, Ogar A, Mietelski JW, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span J Agric Res 8(1):103–108

    Google Scholar 

  • Duceppe N, Tabrizian M (2010) Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv 7:1191–1207

    CAS  PubMed  Google Scholar 

  • Duran N, Maezrcato PD (2013) Nanobiotechnology perspectives role of nanotechnology in the food industry: a review. Int J Food Sci Technol 48:1127–1134

    CAS  Google Scholar 

  • Dzung NA, Thang NT, Suchiva VK, Chandrkrachang S, Methacanon P, Peter MG (2002) Effects of oligoglucosamine prepared by enzyme degradation on the growth of soybean. Adv Chitin Sci Bangkok 5:463–467

    CAS  Google Scholar 

  • El-Bendary HM, El-Helaly AA (2013) First record nanotechnology in agricultural: silica nano-particles a potential new insecticide for pest control. App Sci Rep 4(3):241–246

    Google Scholar 

  • Elmer WH, White JC (2016) The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ Sci Nano 3(5):1072–1079

    CAS  Google Scholar 

  • Fan R, Huang YC, Grusak MA, Huang CP, Sherrier DJ (2014) Effects of nano TiO2 on the agronomically-relevant Rhizobium–legume symbiosis. Sci Total Environ 466:503–512

    PubMed  Google Scholar 

  • Farré M, Sanchís J, Barceló D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trac-Trend Anal Chem 30(3):517–527

    Google Scholar 

  • Feigl C, Russo SP, Barnard AS (2010) Safe, stable and effective nanotechnology: phase mapping of ZnS nanoparticles. J Mater Chem 20(24):4971–4980

    CAS  Google Scholar 

  • Feng BH, Peng LF (2012) Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin. Carbohydr Polym 88(2):576–582

    CAS  Google Scholar 

  • Ferrell J, Carudattan R, Elliott M, Hiebert E (2008) Effects of selected herbicides on the efficacy of tobacco mild green mosaic virus to control tropical soda apple (Solanum viarum). Weed Sci 56(1):128–132

    CAS  Google Scholar 

  • Fountain ED, Wratten SD (2013) Conservation biological control and biopesticides in agricultural. In: Reference module in earth systems and environmental sciences. Elsevier, San Diego, pp 377–381

    Google Scholar 

  • Frasco MF, Chaniotakis N (2009) Semiconductor quantum dots in chemical sensors and biosensors. Sensors 9(9):7266–7286

    CAS  PubMed  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed-Nanotechnol 5(4):382–386

    CAS  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78(18):6749–6758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerland P, Raftery AE, Ševcíková H, Li N, Gu D, Spoorenberg T, Alkema L, Fosdick BK, Chunn J, Lalic N, Bay G, Buettner T, Heilig GK, Wilmoth J (2014) World population stabilization unlikely this century. Science 346(6206):234–237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    CAS  PubMed  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519(3):1252–1257

    CAS  Google Scholar 

  • Grassini P, Eskridge KM, Cassman KG (2013) Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat Commun 4:2918

    PubMed  PubMed Central  Google Scholar 

  • Grillo R, Pereira AES, Nishisaka CS, Lima RD, Oehlke K, Greiner R, Leonardo F, Fraceto LF (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171

    CAS  PubMed  Google Scholar 

  • Guan H, Chi D, Yu J, Li H (2010) Dynamics of residues from a novel nano-imidacloprid formulation in soyabean fields. Crop Prot 29(9):942–946

    CAS  Google Scholar 

  • Guan H, Chi D, Yu J, Li X (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. Pestic Biochem Physiol 92:83–91

    CAS  Google Scholar 

  • Hale S, Alling V, Martinsen V, Mulder J, Breedveld G, Cornelissen G (2013) The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 91:1612–1619

    CAS  PubMed  Google Scholar 

  • Hamdi H, De La Torre-Roche R, Hawthorne J, White JC (2014) Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L). Nanotoxicology 9(2):172–180

    PubMed  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215

    CAS  PubMed  Google Scholar 

  • Huang YC, Fan R, Grusak MA, Sherrier JD, Huang CP (2014) Effects of nano ZnO on the agronomically relevant Rhizobium–legume symbiosis. Sci Total Environ 497:78–90

    PubMed  Google Scholar 

  • Hussain MR, Devi R, Maji TK (2012) Controlled release of urea from chitosan microspheres prepared by emulsification and cross-linking method. Iran Polym J 21:473–479

    CAS  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3(2):635–641

    CAS  PubMed  Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A et al (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A 90:78–84

    CAS  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Kirthi AV, Santhoshkumar T, Marimuthu S et al (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109(1):185–194

    PubMed  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043

    CAS  PubMed  Google Scholar 

  • Judy JD, Kirby JK, McLaughlin MJ, McNear D, Bertsch PM (2016) Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials. Environ Pollut 214:731–736

    CAS  PubMed  Google Scholar 

  • Kahveci Z, Martinez-Tome MJ, Mallavia R, Mateo CR (2016) Fluorescent biosensor for phosphate determination based on immobilized polyfluorene-liposomal nanoparticles coupled with Alkaline Phosphatase. ACS Appl Mater Interface 9(1):136–144

    Google Scholar 

  • Kammann CI, Schmidt H-P, Messerschmidt N, Linsel S, Steffens D, Müller C, Koyro H-W, Conte P, Stephen J (2015) Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci Rep 5:11080

    PubMed  PubMed Central  Google Scholar 

  • Kasprowicz MJ, Kozioł M, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56(3):247–253

    CAS  PubMed  Google Scholar 

  • Katas H, Alpar HO (2006) Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release 115:216–225

    CAS  PubMed  Google Scholar 

  • Keswani C, Sarma BK, Singh HB (2016) Synthesis of policy support, quality control, and regulatory management of biopesticides in sustainable agriculture. In: Singh HB, Sarma BK, Keswani C (eds) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, Singapore, pp 3–12

    Google Scholar 

  • Khan MA, Kim K-W, Mingzhi W, Lim B-K, Lee W-H, Lee J-Y (2008) Nutrient-impregnated charcoal: an environmentally friendly slow-release fertilizer. Environmentalist 28:231–235

    Google Scholar 

  • Khandelwal A, Joshi R (2018) Synthesis of nanoparticles and their application in agriculture. Acta Sci Agric 2(3):10–13

    Google Scholar 

  • Khodakovskaya MV, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    CAS  PubMed  Google Scholar 

  • Khoobdel M, Ahsaei SM, Farzaneh M (2017) Insecticidal activity of polycaprolactone nanocapsules loaded with Rosmarinus officinalis essential oil in Tribolium castaneum (Herbst). Entomol Res 47(3):175–184

    CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed-Nanotechnol 3(1):95–101

    CAS  Google Scholar 

  • King A (2017) The future of agriculture. Nature 544(7651):S21–S23

    CAS  PubMed  Google Scholar 

  • Ko YD, Kang JG, Park JG, Lee S, Kim DW (2009) Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries. Nanotechnology 20(45):455701

    PubMed  Google Scholar 

  • Kress WJ et al (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci U S A 102(23):8369–8374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar N, Palmer GR, Shah V, Walker VK (2014) The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages. PLoS One 9:e99953

    PubMed  PubMed Central  Google Scholar 

  • Kumar N, Sharma S, Nara S (2018) Dual gold nanostructure-based electrochemical immunosensor for CA125 detection. Appl Nanosci 8(7):1843–1853

    CAS  Google Scholar 

  • Kumar N, Tripathi P, Nara S (2017) Gold nanomaterials to plants: impact of bioavailability, particle size and surface coating. In: Nanomaterials in plants, algae and micro-organism: concepts and controversies. Elsevier, London, pp 195–220

    Google Scholar 

  • Kumar P, Burman U, Santra P (2015) Effect of nano-zinc oxide on nitrogenase activity in legumes: an interplay of concentration and exposure time. Int Nano Lett 5:191–198

    CAS  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011a) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39:194–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011b) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39(1):26–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lao SB, Zhang ZX, Xu HH, Jiang GB (2010) Novel amphiphilic chitosan derivatives: synthesis, characterization and micellar solubilization of rotenone. Carbohydr Polym 824:1136–1142

    Google Scholar 

  • Latin R (2006) Residual efficacy of fungicides for control of dollar spot on creeping bentgrass. Plant Dis 50:571–575

    Google Scholar 

  • Li D, Haneda H (2003) Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere 51(2):129–137

    CAS  PubMed  Google Scholar 

  • Li Z, Xue N, Ma H, Cheng Z, Miao X (2018) An ultrasensitive and switch-on platform for aflatoxin B 1 detection in peanut based on the fluorescence quenching of graphene oxide-gold nanocomposites. Talanta 181:346–351

    CAS  PubMed  Google Scholar 

  • Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006a) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41:2268–2275

    CAS  Google Scholar 

  • Liu XM, Feng ZB, Zhang FD, Zhang SQ, He XS (2006b) Preparation and testing of cementing and coating nano-subnanocomposites of slow/controlled-release fertilizer. Agric Sci China 5(9):700–706

    Google Scholar 

  • Liu X, He B, Xu Z, Yin M, Yang W, Zhang H, Cao J, Shen J (2015) A functionalized fluorescent dendrimer as a pesticide nanocarrier: application in pest control. Nanoscale 7:445–449

    CAS  PubMed  Google Scholar 

  • Malmo J, Sørgård H, Vårum KM, Strand SP (2012) siRNA delivery with chitosan nanoparticles: molecular properties favoring efficient gene silencing. J Control Release 158:261–268

    CAS  PubMed  Google Scholar 

  • Mao S, Sun W, Kissel T (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev 62:12–27

    CAS  PubMed  Google Scholar 

  • Marchiol L, Mattiello A, Pošćić F, Giordano C, Musetti R (2014) In vivo synthesis of nanomaterials in plants: location of silver nanoparticles and plant metabolism. Nanoscale Res Lett 9:101

    PubMed  PubMed Central  Google Scholar 

  • Martin OS, Valenstein JS, Lin VSY, Trewyn BG, Wang K (2012) Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv Funct Mater 22:3576–3582

    Google Scholar 

  • Mehta CM, Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. Biotech 6:254–263

    Google Scholar 

  • Meyers BC, Galbraith DW, Nelson T, Agrawal V (2004) Methods for transcriptional profiling in plants. Be fruitful and replicate. Plant Physiol 135(2):637–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michels C, Perazzoli S, Soares HM (2017) Inhibition of an enriched culture of ammonia oxidizing bacteria by two different nanoparticles: silver and magnetite. Sci Total Environ 586:995–1002

    CAS  PubMed  Google Scholar 

  • Miller G, Kinnear S (2007) Nanotechnology the new threat to food. Clean Food Org 4:31–33

    Google Scholar 

  • Miller G, Lowrey N, Senjen R (2008) Out of the laboratory and on to our plates: nanotechnology in food & agriculture. Friends of the Earth, Melbourne

    Google Scholar 

  • Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB et al (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25(4):376–380

    CAS  Google Scholar 

  • Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Emerging technologies and management of crop stress tolerance. Academic, Burlington, pp 159–180

    Google Scholar 

  • Moll J, Gogos A, Bucheli TD, Widmer F, Heijden MG (2016) Effect of nanoparticles on red clover and its symbiotic microorganisms. J Nanobiotechnol 14(1):36

    Google Scholar 

  • Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62(2):889–893

    CAS  Google Scholar 

  • Moraru CI, Panchapakesan CP, Huang Q, Takhistov P, Liu S, Kokini JL (2003) Nanotechnology: a new frontier in food science. Food Technol 57:24–29

    Google Scholar 

  • Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol 101(22):8772–8776

    CAS  PubMed  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    CAS  Google Scholar 

  • Nam J-M, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301(5641):1884–1886

    CAS  PubMed  Google Scholar 

  • Navarro E, Baun A, Behra R et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386

    CAS  PubMed  Google Scholar 

  • Netala VR, Kotakadi VS, Bobbu P, Gaddam SA, Tartte V (2016) Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and anti-microbial studies. 3 Biotech 6(2):132

    PubMed  PubMed Central  Google Scholar 

  • Oancea S, Padureanu S, Oancea AV (2009) Growth dynamics of corn plants during anionic clays action. Luc Ştiint ific 52:212–217

    Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302

    Google Scholar 

  • Patel N, Desa P, Pael N, Jha A, Gautam HK (2014) Agronatechlogy for plant fungal disease management: a review. Int J Cur Microbiol Appl Sci 3(10):71–84

    Google Scholar 

  • Paula HCB, MSombra F, Cavalcante RF, Abreu FOMS, de Paula RCM (2011) Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Mater Sci Eng C 31:173–178

    CAS  Google Scholar 

  • Paulkumar K, Gnanajobitha G, Vanaja M, Rajeshkumar S, Malarkodi C, Pandian K et al (2014) Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Sci World J 2014:1–9

    Google Scholar 

  • Pereira AES, Grillo R, Mello NFS, Rosa AH, Fraceto LF (2014) Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215

    CAS  PubMed  Google Scholar 

  • Peteu SF, Oancea F, Sicuia OA, Constantinescu F, Dinu S (2010) Responsive polymers for crop protection. Polym J 2:229–251

    CAS  Google Scholar 

  • Prasad VK, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):706–713

    Google Scholar 

  • Ragelle H, Vandermeulen G, Préa V (2013) Chitosan-based siRNA delivery systems. J Control Release 172:207–218

    CAS  PubMed  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293

    CAS  PubMed  Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324

    CAS  Google Scholar 

  • Rastogi A, Tripathi DK, Yadav S, Chauhan DK, Živčák M, Ghorbanpour M, El-Sheery NI, Brestic M (2019) Application of silicon nanoparticles in agriculture. 3 Biotech 9(3):90

    PubMed  PubMed Central  Google Scholar 

  • Rauwel P, Küünal S, Ferdov S, Rauwel E (2015) A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mater Sci Eng 2015:1–9

    Google Scholar 

  • Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture. Int J Curr Microbiol App Sci 3(3):43–55

    Google Scholar 

  • Sarkar A, Praveen G (2017) Utilization of waste biomass into useful forms of energy. In: Biofuels and bioenergy. Springer, Cham, pp 117–132

    Google Scholar 

  • Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62(21):4833–4838

    CAS  PubMed  Google Scholar 

  • Scrinis G, Lyons K, Sharmila Rahale C (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Soc Agric Food 15:22–44

    Google Scholar 

  • Seo JW, Lee JH, Son IS, Kim YJ, Hwang Y, Chung HA, Kuswandi B, Wicaksono Y, Abdullah A, Heng LY, Ahmad M (2011) Smart packaging: sensors for monitoring of food quality and safety. Sens & Instrumen Food Qual 5:137–146

    Google Scholar 

  • Shojaei TR et al (2009) The effect of plant growth regulators, cultivars and substrate combination on production of virus free potato minitubers. Afr J Biotechnol 8(19):4864–4871

    CAS  Google Scholar 

  • Shrivastava S, Dash D (2012) Nanotechnology in food sector and agriculture. Proc Natl Acad Sci India Sect B Biol Sci 82(1):29–35

    CAS  Google Scholar 

  • Shweta, Vishwakarma K, Sharma S, Narayan RP, Srivastava P, Khan AS, Dubey NK, Tripathi DK, Chauhan DK (2017) Plants and carbon nanotubes (CNTs) interface: present status and future prospects. In: Nanotechnology. Springer, Singapore, pp 317–340

    Google Scholar 

  • Silva MS, Cocenzaa DS, Grillo R, de Meloa NFS, Tonelloa POS, de Oliveirac LC, Cassimirod DL, Rosaa AH, Fracetoa LF (2011) Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Hazard Mater 190:366–374

    CAS  Google Scholar 

  • Singh S, Vishwakarma K, Singh S, Sharma S, Dubey NK, Singh VK, Liu S, Tripathi DK, Chauhan DK (2017) Understanding the plant and nanoparticle interface at transcriptomic and proteomic level: a concentric overview. Plant Gene 11:265-272

    Google Scholar 

  • Singh J, Vishwakarma K, Ramawat N, Rai P, Singh VK, Mishra RK, Sharma S (2019) Nanomaterials and microbes’ interactions. Biotech 9(3):68

    Google Scholar 

  • Sivamani E, DeLong RK, Qu R (2009) Protamine-mediated DNA coating remarkably improves bombardment transformation efficiency in plant cells. Plant Cell Rep 28(2):213–221

    CAS  PubMed  Google Scholar 

  • Spokas KA, Novak JM, Venterea RT (2012) Biochar’s role as an alternative N-fertilizer: ammonia capture. Plant Soil 350:35–42

    CAS  Google Scholar 

  • Steinborn A, Alder L, Spitzke M, Dork D, Anastassiades M (2017) Development of a QuEChERS-based method for the simultaneous determination of acidic pesticides, their esters, and conjugates following alkaline hydrolysis. J Agric Food Chem 65:1296–1305

    CAS  PubMed  Google Scholar 

  • Stern ST, McNeil SE (2008) Nanotechnology safety concerns revisited. Toxicol Sci 101:4–21

    CAS  PubMed  Google Scholar 

  • Takeuchi MT, Kojima M, Luetzow M (2014) State of the art on the initiatives and activities relevant to risk assessment and risk management of nanotechnologies in the food and agriculture sectors. Food Res Int 64:976–981

    PubMed  Google Scholar 

  • Tao S, Pang R, Chen C et al (2012) Synthesis, characterization and slow release properties of O-naphthylacetyl chitosan. Carbohydr Polym 88:1189–1194

    CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–667

    CAS  PubMed  Google Scholar 

  • Torney F, Trewyn BG, Lin VS, Wang (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300

    CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017b) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81

    CAS  PubMed  Google Scholar 

  • Tripathi DK, Mishra RK, Singh S, Singh S, Singh VP, Singh PK, Chauhan DK, Prasad SM, Dubey NK, Pandey AC (2017c) Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate-glutathione cycle. Front Plant Sci 8:1

    Google Scholar 

  • Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012) Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. Acta Physiol Plant 34(1):279–289

    CAS  Google Scholar 

  • Tripathi DK, Tripathi A, Shweta SS, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay RG, Dubey NK, Lee Y, Chauhan DK (2017a) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8(7):1–16

    CAS  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Tripathi DK, Sharma S (2017a) Potential applications and avenues of nanotechnology in sustainable agriculture. In: Nanomaterials in plants, algae and microorganism: concepts and controversies. Elsevier, New York, pp 473–500

    Google Scholar 

  • Vishwakarma K, Shweta, Upadhyay N, Singh J, Liu S, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2017b) Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front Plant Sci 8:1–12

    PubMed  PubMed Central  Google Scholar 

  • Vishwakarma K, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2019) Silicon and plant growth promoting rhizobacteria differentially regulate AgNPinduced toxicity in Brassica juncea: implication of nitric oxide. J Hazard Mater 121806

    Google Scholar 

  • Vundavalli R, Vundavalli S, Nakka M, Rao DS (2015) Biodegradable nano-hydrogels in agricultural farming-alternative source for water resources. Procedia Mater Sci 10:548–554S

    CAS  Google Scholar 

  • Wani AH, Shah MA (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharma Sci 2(3):4

    Google Scholar 

  • Woo KS, Kim KS, Lamsal K et al (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

    Google Scholar 

  • Wu L, Liu M, Liang R (2008) Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresour Technol 99:547–554

    CAS  PubMed  Google Scholar 

  • Zhang X, Zhang J, Zhu KY (2010) Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol 19:683–693

    PubMed  Google Scholar 

  • Xie L, Liu M, Ni B, Zhang X, Wang Y (2011) Slow-release nitrogen and boron fertilizer from a functional superabsorbent formulation based on wheat straw and attapulgite. Chem Eng 167:342–348

    CAS  Google Scholar 

  • Xu G, Sun J, Shao H, Chang SX (2014) Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol Eng 62:54–60

    Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticle loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162

    CAS  PubMed  Google Scholar 

  • Yang Y, Wang J, Xiu Z, Alvarez PJ (2013) Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen- cycling bacteria. Environ Toxicol Chem 32:1488–1494

    CAS  PubMed  Google Scholar 

  • Yu Z, Sun X, Song H, Wang W, Ye Z, Shi L, Ding K (2015) Glutathione-responsive carboxymethyl chitosan nanoparticles for controlled release of herbicides. Mater Sci Appl 6:591–604

    CAS  Google Scholar 

  • Zimnitsky D, Jiang C, Xu J, Lin Z, Tsukruk VV (2007) Substrate-and time-dependent photoluminescence of quantum dots inside the ultrathin polymer LbL film. Langmuir 23(8):4509–4515

    CAS  PubMed  Google Scholar 

  • Zuo X, Zhang H, Zhu Q, Wang W, Feng J, Chen X (2016) A dual-colour fluorescent bio sensing platform based on WS2 nanosheet for detection of Hg2+ and Ag+. Biosens Bioelectron 85:464–470

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanchan Vishwakarma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, N., Balamurugan, A., Mohiraa Shafreen, M., Rahim, A., Vats, S., Vishwakarma, K. (2020). Nanomaterials: Emerging Trends and Future Prospects for Economical Agricultural System. In: Ghorbanpour, M., Bhargava, P., Varma, A., Choudhary, D. (eds) Biogenic Nano-Particles and their Use in Agro-ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2985-6_16

Download citation

Publish with us

Policies and ethics