Skip to main content

Application of Biogenic and Non-biogenic Synthesized Metal Nanoparticles on Longevity of Agricultural Crops

  • Chapter
  • First Online:
Biogenic Nano-Particles and their Use in Agro-ecosystems
  • 867 Accesses

Abstract

Agricultural crops includes horticultural (vegetables, fruits and ornamental plants), agronomic and aromatic medicinal herbs. Human population is growing fast, and consequently providing enough and healthy food is becoming a very significant problem in the near future. Nowadays, decreasing postharvest waste through using the findings of innovative technical studies like nanotechnology and nanobiotechnology in crops could be planned as one of the best resolutions to this problem. Progressing in time proved development in technology that showed the ability of metals of nanoscale to perform specific utilities better than the bulk form of metals. Nanotechnology by means of specific characters of nanoparticles can be an identical valuable knowledge in various industry and science divisions. Therefore, the current chapter especially focuses on the uses of biological or biogenic and non-biological (biogenic) on the shelf life of agricultural crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi-Alikamar R, Eskandari M, Tatari M (2007) The effect of water extract of Saffron’s petals on germination and seedling growth of wheat (cultivar: Azar2). Second international symposium on saffron biology and technology. Acta Hortic 739

    Google Scholar 

  • Abdel-kader H, Roger MN (1986) Postharvest treatment of Gerbera jamesonii. Acta Horic. Abs. 181

    Google Scholar 

  • Accanti EG, Jona R (1989) Parameters influencing gerbera cut flower longevity. Acta Hortic 261:63–68

    Google Scholar 

  • Ahmad N, Sharma S, Alama MK, Singh VN, Shamsi SF, Mehta BR, Fatmae A (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B: Biointerfaces 81:81–86

    CAS  PubMed  Google Scholar 

  • Amin OA (2017) Influence of Nanosilver and Stevia extract on cut Anthurium inflorescences. Middle East Journal of Applied Sciences 7(2):299–313

    Google Scholar 

  • Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Effect of silver on burn wound infection control and healing: review of the literature. Burns 33:139–148

    PubMed  Google Scholar 

  • Bahrehmand S, Razmjoo J, Farahmand H (2014) Effects of nano-silver and sucrose applications on cut flower longevity and quality of tuberose (Polianthus tuberosa). Int J Hortic Sci Technol 1:67–77

    CAS  Google Scholar 

  • Balestra GM, Agostini R, Bellincontro A, Mencarelli F, Varvaro L (2005) Bacterial populations related to gerbera (Gerbera jamesonii L.) stem break. Phytopathol Mediterr 44:291–299

    Google Scholar 

  • Bankar A, Joshi B, Kumar AR, Zinjarde S (2010) Banana peel extract mediated novel rout for the synthesis of silver nanoparticles. Colloid Surf A Physicochem Eng Asp 368:58–63

    CAS  Google Scholar 

  • Blaser SA, Scheringer M, Mac Leod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409

    CAS  PubMed  Google Scholar 

  • Danilczuk M, Lund A, Saldo J, Yamada H, Michali KJ (2006) Conduction electron spin resonance of small silver particles. Spectrochimaca Acta A 63:189–191

    CAS  Google Scholar 

  • Danza A, Conte A, Mastromatteo M, Del Nobile MA (2015) A new example of nanotechnology applied to minimally processed fruit: the case of fresh-cut melon. J Food Process Technol 6(4):1–4

    Google Scholar 

  • Dubey SP, Lahtineb M, Sillanpaa M (2010) S green synthesis and characterization of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf A Physiochem Eng Asp 364:34–41

    CAS  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    CAS  PubMed  Google Scholar 

  • Ferrante A, Alberici A, Antonacci S (2007) Effects of promoter and inhibitors of phenylalanine ammonia-lyase enzymes on stem bending of cut gerbera flowers. Acta Horic 755:471–476

    CAS  Google Scholar 

  • Gerasopoulos D, Chebli B (1999) Effects of pre- and postharvest calcium applications on the vase-life of cut gerberas. J Hort Sci & Biotech 74:78–81

    Google Scholar 

  • Ghorbani M (2008) The efficiency of Saffron’s marketing channel in Iran. World Appl Sci J 4(4):523–527

    Google Scholar 

  • Ghorbani HR (2013) Biosynthesis of silver nanoparticles using Salmonella typhimurium. J Nanostruct Chem 3:29

    Google Scholar 

  • Hadizadeh F, Khalili N, Hosseinzadeh H, Khair-Aldine R (2003) Kaempferol from saffron petals. Iran J Pharm Res 2:251–252

    CAS  Google Scholar 

  • Hassan FAS, Ali EF, El-Deebc B (2014) Improvement of postharvest quality of cut rose cv. ‘First red’ by biologically synthesized silver nanoparticles. Sci Hortic 179:340–348

    CAS  Google Scholar 

  • Halevy AH, Mayak S (1979) Senescence and post-harvest physiology of cut flowers: part І. Hortic Rev 1:204–236

    CAS  Google Scholar 

  • Isao K, Ikuyo KH (1999) Flavonols from saffron flowers, tyrosinase activity and inhibition mechanism. J Agric Food Chem 47:4121–4125

    Google Scholar 

  • Jafarpour M, Golparvar AR, Askarikhorasgani O, Amini S (2015) Improving postharvest vase-life and quality of cut gerbera flowers using natural and chemical preservatives. J Cent Eur Agric 16(2):199–211

    Google Scholar 

  • Jain D, Kumar Daima H, Kachhwaha S, Kothari SL (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities. Dig Nanomater Biostruct 4(3):557–563

    Google Scholar 

  • Jowkar MM, Kafi M, Khalighi A, Hasanzadeh N (2012) Postharvest physiological and microbial impact of hydroxy quinoline citrate as ‘cherry brandy’ rose vase solution biocide. Ann Biol Res 3(5):2238–2247

    CAS  Google Scholar 

  • Jowkar MM, Khalighi A, Kafi M, Hassanzadeh N (2013) Nano silver application impact as vase solution biocide on postharvest microbial and physiological properties of ‘cherry brandy’ rose. Journal of Food, Agriculture & Environment 11(1):1045–1050

    CAS  Google Scholar 

  • Kamiab F, Shahmoradzadeh Fahreji S, Zamani Bahramabadi E (2017) Antimicrobial and physiological effects of silver and silicon nanoparticles on vase life of Lisianthus (Eustoma grandiflora cv. Echo) flowers. International journal of horticultural. Sci Technol 4(1):135–144

    CAS  Google Scholar 

  • Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A 79:594–598

    CAS  Google Scholar 

  • Lakshmi SJ, Bai RSR, Sharanagouda H, Ramachandra CT, Nadagouda S, Nidoni U (2018) Effect of biosynthesized zinc oxide nanoparticles coating on quality parameters of fig (Ficus carica L.) fruit. J Pharmacogn Phytochem 7(3):10–14

    CAS  Google Scholar 

  • Li H, Lia H, Liua J, Luoa Z, Joyce D, He S (2017) Nano-silver treatments reduced bacterial colonization and bio film formation at the stem-ends of cut gladiolus ‘Eerde’ spikes. Postharvest Biol Technol 123:102–111

    CAS  Google Scholar 

  • Liu J, He S, Zhang Z, Cao J, LV P, Joyce DC (2009) Nano-silver pulse treatments inhibit stem-end bacteria on cut gerbera cv. Ruikou flowers. Postharvest Biol Technol 54:59–62

    CAS  Google Scholar 

  • López-Vargas ER, Ortega-Ortíz H, Cadenas-Pliego G, Romenus KA, Fuente MC, Mendoza AB, Juárez-Maldonado A (2018) Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Appl Sci 8:1020. https://doi.org/10.3390/app8071020

    Article  CAS  Google Scholar 

  • Lu P, He S, Li H, Cao J, Xu H (2010) Effects of nano-silver treatment on vase life of cut rose cv. Movie star flowers. J Food Agric Environ 8(2):1118–1122

    CAS  Google Scholar 

  • Maneerung T, Tokura S, Rujiravant R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    CAS  Google Scholar 

  • Meman MA, Dabhi KM (2006) Effects of different stalk lengths and certain chemical substances on vase life of gerbera (Gerbera jamesonii hook.) cv. ‘Savana red’. J Appl Hortic 8:147–150

    Google Scholar 

  • Mencarelli F, Agostini R, Botondi R, Massantini R (1995) Ethylene production, ACC content, PAL and POD activity in excised sections of straight and bent gerbera scapes. J Hortic Sci 70:409–416

    CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartman NB, Filser J, Miao AJ, Quiagg A, Santachi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    CAS  PubMed  Google Scholar 

  • Rafi ZN, Ramezanian A (2013) Vase life of cut rose cultivars ‘avalanche’ and ‘fiesta’ as affected by Nano-silver and S-carvone treatments. S Afr J Bot 86:68–72

    Google Scholar 

  • Rodney BJ, Hill M (1993) The effect of germicides on the longevity of cut flowers. J Am Soc Hortic Sci 118(3):350–354

    Google Scholar 

  • Singh M, Sahareen T (2017) Investigation of cellulosic packets impregnated with silver nanoparticles for enhancing shelf-life of vegetables. LWT Food Sci Technol 86:116–122

    CAS  Google Scholar 

  • Solgi M (2014) Evaluation of plant-mediated silver nanoparticles synthesis and its application in postharvest physiology of cut flowers. Physiol Mol Biol Plants 20(30):279–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solgi M (2018) The application of new environmentally friendly compounds on postharvest characteristics of cut carnation (Dianthus caryophyllus L.). Rev Bras Bot 41:515–522

    Google Scholar 

  • Solgi M, Taghizadeh M (2012) Silver nanoparticles ecofriendly synthesis by two medicinal plants. Int J Nanomater Biostruct 2(4):60–64

    Google Scholar 

  • Solgi M, Taghizadeh M (2017) The effects of silver nitrate, thymol, green silver nanoparticles and chitosan on vase life of carnation cut flowers cv. White liberty. Plant Prod 40(2):1–13. (In Persian)

    Google Scholar 

  • Solgi M, Kafi M, Taghavi TS, Naderi R (2009) Essential oils and silver nanoparticles (SNP) as novel agents to extend vase life of gerbera (Gerbera jamesonii cv. ‘Dune’). Postharvest Biol Technol 53:155–158

    CAS  Google Scholar 

  • Solgi M, Kafi M, Taghavi TS, Naderi R, Eyre J, Joyce DC (2011) Effects of silver nanoparticles (SNP) on Gerbera jamesonii cut flowers. Int J Postharvest Innov 2(3):274–285

    Google Scholar 

  • Sondi I, Salopek-sondi B (2004) Silver nanoparticles as an antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interf Sci 27:177–182

    Google Scholar 

  • Trias R, Badosa E, Montesinos E, Baneras L (2008) Bioprotective Leuconostoc strains against Listeria monocytogenes in fresh fruits and vegetables. Int J Food Microbiol 127:91–98

    CAS  PubMed  Google Scholar 

  • Ukuku DO (2004) Effect of hydrogen peroxide treatment on microbial quality and appearance of whole and fresh-cut melons contaminated with Salmonella spp. Int J Food Microbiol 95:137–146

    CAS  PubMed  Google Scholar 

  • Van Doorn WG, De Witte Y (1994) Effect of bacteria on scape bending in cut Gerbera jamesonii flowers. J Am Soc Hortic Sci 119:568–571

    Google Scholar 

  • Van Meeteren U (1978) Water relations and keeping-quality of cut gerbera flowers. I. The cause of stem break. Sci Hortic 8:65–74

    Google Scholar 

  • Yadollahi A, Arzani K, Khoshghal H (2010) The role of nanotechnology in horticultural crops postharvest management. Acta Hortic (875):49–56

    Google Scholar 

  • Zagory D, Reid MS (1986) Role of vase solution microorganisms in the life of cut-flowers. J Am Soc Hortic Sci 111(1):154–158

    Google Scholar 

  • Zandi K, Weisany W, Ahmadi H, Bazargan I, Naseri L (2013) Effect of nanocomposite-based packaging on postharvest quality of strawberry during storage. Bull Environ Pharmacol Life Sci 2(5):28–36

    Google Scholar 

  • Zhang C, Li W, Zhu B, Chen H, Chi H, Li L, Qin Y, Xue J (2018) The quality evaluation of postharvest strawberries stored in Nano-Ag packages at refrigeration temperature. Polymers 10:894. https://doi.org/10.3390/polym10080894

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousa Solgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Solgi, M. (2020). Application of Biogenic and Non-biogenic Synthesized Metal Nanoparticles on Longevity of Agricultural Crops. In: Ghorbanpour, M., Bhargava, P., Varma, A., Choudhary, D. (eds) Biogenic Nano-Particles and their Use in Agro-ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2985-6_12

Download citation

Publish with us

Policies and ethics