Skip to main content

Biogenic Nanoparticles in the Insect World: Challenges and Constraints

  • Chapter
  • First Online:
Biogenic Nano-Particles and their Use in Agro-ecosystems

Abstract

Insects are found in a variety of environmental conditions and occupy little more than two-thirds of the known species of animals in the world. Traditional pest management tactics used in plant protection are insufficient, and synthetic pesticides are costly and have adverse effects on human and environment. A brilliant approach to pest control is using nanoparticles to help reduce the application of synthetic pesticides and environmental pollution, therefore providing green and efficient alternative approaches for pest control in plant protection by the help of nanotechnology without harming the environment. Nowadays, biosynthesis of nanoparticles by microorganisms and plants is being efficiently used in plant protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afrin T, Wait A (2018) Effects of engineered carbon and silver nanoparticles on gene expression in Plutella xylostella to assess toxicity. J Genet Genet Eng 2:9–17

    Google Scholar 

  • Amerasan D, Nataraj T, Murugan K, Panneerselvam C, Madhiyazhagan P, Nicoletti M, Benelli G (2016) Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci 89:249–256

    Google Scholar 

  • Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector Borne Zoonotic Dis 12:262–268

    PubMed  Google Scholar 

  • Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A (2013) Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8:e53186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Athanassiou C, Kavallieratos N, Benelli G, Losic D, Rani PU, Desneux N (2018) Nanoparticles for pest control: current status and future perspectives. J Pest Sci 91:1–15

    Google Scholar 

  • Banumathi B et al (2017) Exploitation of chemical, herbal and nanoformulated acaricides to control the cattle tick, Rhipicephalus (Boophilus) microplus—a review. Vet Parasitol 244:102–110

    CAS  PubMed  Google Scholar 

  • Barik T, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103:253–258

    CAS  PubMed  Google Scholar 

  • Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395

    CAS  PubMed  Google Scholar 

  • Benelli G (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805

    PubMed  Google Scholar 

  • Benelli G (2016a) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzym Microb Technol 95:58–68

    CAS  Google Scholar 

  • Benelli G (2016b) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34

    PubMed  Google Scholar 

  • Benelli G (2018) Gold nanoparticles–against parasites and insect vectors. Acta Trop 178:73–80

    CAS  PubMed  Google Scholar 

  • Benelli G, Lukehart CM (2017) Applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J Clust Sci 28:1–2

    CAS  Google Scholar 

  • Benelli G et al (2017a) Nanoparticles as effective acaricides against ticks—a review. Ticks Tick Borne Dis 8:821–826

    PubMed  Google Scholar 

  • Benelli G, Pavela R, Maggi F, Petrelli R, Nicoletti M (2017b) Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J Clust Sci 28:3–10

    CAS  Google Scholar 

  • Bharani RA, Namasivayam SKR (2017) Biogenic silver nanoparticles mediated stress on developmental period and gut physiology of major lepidopteran pest Spodoptera litura (Fab.) (Lepidoptera: Noctuidae)—an eco-friendly approach of insect pest control. J Environ Chem Eng 5:453–467

    CAS  Google Scholar 

  • Devi GD, Murugan K, Selvam CP (2014) Green synthesis of silver nanoparticles using Euphorbia hirta (Euphorbiaceae) leaf extract against crop pest of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J Biopest 7:54–66

    CAS  Google Scholar 

  • Dinesh D et al (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529

    PubMed  Google Scholar 

  • Dubey M, Bhadauria S, Kushwah B (2009) Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (safeda) leaf. Dig J Nanomater Biostruct 4:537–543

    Google Scholar 

  • Dziewięcka M, Karpeta-Kaczmarek J, Augustyniak M, Majchrzycki Ł, Augustyniak-Jabłokow MA (2016) Evaluation of in vivo graphene oxide toxicity for Acheta domesticus in relation to nanomaterial purity and time passed from the exposure. J Hazard Mater 305:30–40

    PubMed  Google Scholar 

  • Ehrlich H et al (2008) Nanostructural organization of naturally occurring composites-part II: silica-chitin-based biocomposites. J Nanomater 3:1–8

    Google Scholar 

  • Elango G, Roopan SM, Dhamodaran KI, Elumalai K, Al-Dhabi NA, Arasu MV (2016) Spectroscopic investigation of biosynthesized nickel nanoparticles and its larvicidal, pesticidal activities. J Photochem Photobiol B Biol 162:162–167

    CAS  Google Scholar 

  • Fahimirad S, Ajalloueian F, Ghorbanpour M (2019) Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicol Environ Saf 168:260–278

    CAS  PubMed  Google Scholar 

  • Filipponi L, Sutherland D, Center IN (2010) Introduction to nanoscience and nanotechnologies Interdisciplinary Nanoscience Center (iNano): Aarhus University, NANOYOU Teachers Training in Nanoscience and Nanotechnologies, pp 2–29

    Google Scholar 

  • Foldbjerg R, Jiang X, Miclăuş T, Chen C, Autrup H, Beer C (2015) Silver nanoparticles–wolves in sheep’s clothing? Toxicol Res 4:563–575

    CAS  Google Scholar 

  • Fouad H, Hongjie L, Hosni D, Wei J, Abbas G, Ga’al H, Jianchu M (2018) Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif Cells Nanomed Biotechnol 46:558–567

    CAS  PubMed  Google Scholar 

  • Fröhlich E, Kueznik T, Samberger C, Roblegg E, Wrighton C, Pieber TR (2010) Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes. Toxicol Appl Pharmacol 242:326–332

    PubMed  Google Scholar 

  • Fruijtier-Pölloth C (2012) The toxicological mode of action and the safety of synthetic amorphous silica—A. nanostructured material. Toxicology 294:61–79

    PubMed  Google Scholar 

  • Ga’al H, Fouad H, Tian J, Hu Y, Abbas G, Mo J (2018) Synthesis, characterization and efficacy of silver nanoparticles against Aedes albopictus larvae and pupae. Pestic Biochem Physiol 144:49–56

    PubMed  Google Scholar 

  • Govindarajan M, Benelli G (2016) One-pot green synthesis of silver nanocrystals using Hymenodictyon orixense: a cheap and effective tool against malaria, chikungunya and Japanese encephalitis mosquito vectors? RSC Adv 6:59021–59029

    CAS  Google Scholar 

  • Govindarajan M, Khater HF, Panneerselvam C, Benelli G (2016) One-pot fabrication of silver nanocrystals using Nicandra physalodes: a novel route for mosquito vector control with moderate toxicity on non-target water bugs. Res Vet Sci 107:95–101

    CAS  PubMed  Google Scholar 

  • Huang J et al (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104

    Google Scholar 

  • Huck WT (2008) Responsive polymers for nanoscale actuation. Mater Today 11:24–32

    CAS  Google Scholar 

  • Iga M, Kataoka H (2012) Recent studies on insect hormone metabolic pathways mediated by cytochrome P450 enzymes. Biol Pharm Bull 35:838–843

    CAS  PubMed  Google Scholar 

  • Jayaseelan C et al (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109:185–194

    PubMed  Google Scholar 

  • Jayaseelan C et al (2012) Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites. Parasitol Res 111:921–933

    PubMed  Google Scholar 

  • Jiang X et al (2015) Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology 9:181–189

    CAS  PubMed  Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    CAS  PubMed  Google Scholar 

  • Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43:1823–1867

    CAS  Google Scholar 

  • Kalimuthu K et al (2017) Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Saf Environ Prot 109:82–96

    CAS  Google Scholar 

  • Kamaraj C, Rajakumar G, Rahuman AA, Velayutham K, Bagavan A, Zahir AA, Elango G (2012) Feeding deterrent activity of synthesized silver nanoparticles using Manilkara zapota leaf extract against the house fly, Musca domestica (Diptera: Muscidae). Parasitol Res 111:2439–2448

    PubMed  Google Scholar 

  • Knowles A (2009) Global trends in pesticide formulation technology: the development of safer formulations in China. Outlook Pest Manag 20:165–170

    Google Scholar 

  • Lamb JG, Hathaway LB, Munger MA, Raucy JL, Franklin MR (2010) Nanosilver particle effects on drug metabolism in vitro. Drug Metab Dispos 38:2246–2251

    CAS  PubMed  Google Scholar 

  • Lin J, Zhang H, Chen Z, Zheng Y (2010) Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4:5421–5429

    CAS  PubMed  Google Scholar 

  • Lin PC, Lin HJ, Liao YY, Guo HR, Chen KT (2013a) Acute poisoning with neonicotinoid insecticides: a case report and literature review. Basic Clin Pharmacol Toxicol 112:282–286

    CAS  PubMed  Google Scholar 

  • Lin Q et al (2013b) Transcriptome analysis of chlorantraniliprole resistance development in the diamondback moth Plutella xylostella. PLoS One 8:e72314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madhiyazhagan P et al (2015) Sargassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol Res 114:4305–4317

    PubMed  Google Scholar 

  • Mao B-H, Chen Z-Y, Wang Y-J, Yan S-J (2018) Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 8:2445

    PubMed  PubMed Central  Google Scholar 

  • Marimuthu S et al (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108:1541–1549

    PubMed  Google Scholar 

  • Martignoni M, Groothuis GM, de Kanter R (2006) Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2:875–894

    CAS  PubMed  Google Scholar 

  • Martínez-Paz P, Morales M, Martínez-Guitarte JL, Morcillo G (2012) Characterization of a cytochrome P450 gene (CYP4G) and modulation under different exposures to xenobiotics (tributyltin, nonylphenol, bisphenol A) in Chironomus riparius aquatic larvae. Comp Biochem Physiol Part C: Toxicol Pharmacol 155:333–343

    Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    CAS  Google Scholar 

  • Moore M (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    CAS  PubMed  Google Scholar 

  • Moorthi PV, Balasubramanian C, Mohan S (2015) An improved insecticidal activity of silver nanoparticle synthesized by using Sargassum muticum. Appl Biochem Biotechnol 175:135–140

    CAS  PubMed  Google Scholar 

  • Mukunthan K, Elumalai E, Patel TN, Murty VR (2011) Catharanthus roseus: a natural source for the synthesis of silver nanoparticles. Asian Pac J Trop Biomed 1:270–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murugan K et al (2015a) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138

    CAS  PubMed  Google Scholar 

  • Murugan K et al (2015b) Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitol Res 114:4645–4654

    PubMed  Google Scholar 

  • Nair PMG, Choi J (2011) Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquat Toxicol 101:550–560

    CAS  PubMed  Google Scholar 

  • Nair PMG, Choi J (2012) Modulation in the mRNA expression of ecdysone receptor gene in aquatic midge, Chironomus riparius upon exposure to nonylphenol and silver nanoparticles. Environ Toxicol Pharmacol 33:98–106

    CAS  PubMed  Google Scholar 

  • Nair PMG, Park SY, Lee S-W, Choi J (2011) Differential expression of ribosomal protein gene, gonadotropin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius. Aquat Toxicol 101:31–37

    PubMed  Google Scholar 

  • Nair PMG, Park SY, Choi J (2013) Evaluation of the effect of silver nanoparticles and silver ions using stress responsive gene expression in Chironomus riparius. Chemosphere 92:592–599

    CAS  PubMed  Google Scholar 

  • Naqqash MN, Gökçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115:1363–1373

    PubMed  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13

    CAS  Google Scholar 

  • Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158

    CAS  Google Scholar 

  • Niu G, Rupasinghe SG, Zangerl AR, Siegel JP, Schuler MA, Berenbaum MR (2011) A substrate-specific cytochrome P450 monooxygenase, CYP6AB11, from the polyphagous navel orangeworm (Amyelois transitella). Insect Biochem Mol Biol 41:244–253

    CAS  PubMed  Google Scholar 

  • Oskam G (2006) Metal oxide nanoparticles: synthesis, characterization and application. J Sol-Gel Sci Technol 37:161–164

    CAS  Google Scholar 

  • Owolade O, Ogunleti D, Adenekan M (2008) Titanium dioxide affects disease development and yield of edible cowpea. J Agric Food Chem 7:2942–2947

    CAS  Google Scholar 

  • Park E-J, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol in Vitro 24:872–878

    CAS  PubMed  Google Scholar 

  • Pelkonen O, Mäeenpäeä J, Taavitsainen P, Rautio A, Raunio H (1998) Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica 28:1203–1253

    CAS  PubMed  Google Scholar 

  • Ragaei M, Sabry A-kH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3:528–545

    Google Scholar 

  • Rajaganesh R et al (2016) Fern-synthesized silver nanocrystals: towards a new class of mosquito oviposition deterrents? Res Vet Sci 109:40–51

    CAS  PubMed  Google Scholar 

  • Rajan R, Chandran K, Harper SL, Yun S-I, Kalaichelvan PT (2015) Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373

    CAS  Google Scholar 

  • Roni M et al (2015) Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf 121:31–38

    CAS  PubMed  Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109:823–831

    PubMed  Google Scholar 

  • Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488

    CAS  PubMed  Google Scholar 

  • Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343

    CAS  PubMed  Google Scholar 

  • Simkiss K, Wilbur KM (2012) Biomineralization. Academic/Elsevier, San Diego, p 337

    Google Scholar 

  • Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanopart Res 13:2981–2988

    CAS  Google Scholar 

  • Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184

    PubMed  Google Scholar 

  • Soni N, Prakash S (2013) Possible mosquito control by silver nanoparticles synthesized by soil fungus (Aspergillus niger 2587). Adv Nanopart 2:125–132

    Google Scholar 

  • Subramaniam J et al (2015) Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ Sci Pollut Res 22:20067–20083

    CAS  Google Scholar 

  • Suganya P et al (2017) Biopolymer zein-coated gold nanoparticles: synthesis, antibacterial potential, toxicity and histopathological effects against the zika virus vector Aedes aegypti. J Photochem Photobiol B Biol 173:404–411

    CAS  Google Scholar 

  • Sundararajan B, Kumari BR (2017) Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. J Trace Elem Med Biol 43:187–196

    CAS  PubMed  Google Scholar 

  • Sundaravadivelan C, Padmanabhan MN (2014) Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L. Environ Sci Pollut Res 21:4624–4633

    CAS  Google Scholar 

  • Suresh G et al (2014) Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities. Spectrochim Acta A Mol Biomol Spectrosc 127:61–66

    CAS  PubMed  Google Scholar 

  • Suresh U et al (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562

    PubMed  Google Scholar 

  • Teimouri M, Khosravi-Nejad F, Attar F, Saboury AA, Kostova I, Benelli G, Falahati M (2018) Gold nanoparticles fabrication by plant extracts: synthesis, characterization, degradation of 4-nitrophenol from industrial wastewater, and insecticidal activity—a review. J Clean Prod 184:740–753

    CAS  Google Scholar 

  • Veerakumar K, Govindarajan M (2014) Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes. Parasitol Res 113:4085–4096

    PubMed  Google Scholar 

  • Warisnoicharoen W, Hongpiticharoen P, Lawanprasert S (2011) Alteration in enzymatic function of human cytochrome P450 by silver nanoparticles. Res J Environ Toxicol 5:58–64

    CAS  Google Scholar 

  • Watson GS, Watson JA (2004) Natural nano-structures on insects—possible functions of ordered arrays characterized by atomic force microscopy. Appl Surf Sci 235:139–144

    CAS  Google Scholar 

  • Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1:Reviews3003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yasur J, Rani PU (2013) Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environ Sci Pollut Res 20:8636–8648

    CAS  Google Scholar 

  • Yasur J, Rani PU (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102

    CAS  PubMed  Google Scholar 

  • Zahir AA, Bagavan A, Kamaraj C, Elango G, Rahuman AA (2012) Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopest 11:921–933

    Google Scholar 

  • Zhang G, Zhang J, Xie G, Liu Z, Shao H (2006) Cicada wings: a stamp from nature for nanoimprint lithography. Small 2:1440–1443

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Ghorbanpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maroufpour, N., Mousavi, M., Asgari Lajayer, B., Ghorbanpour, M. (2020). Biogenic Nanoparticles in the Insect World: Challenges and Constraints. In: Ghorbanpour, M., Bhargava, P., Varma, A., Choudhary, D. (eds) Biogenic Nano-Particles and their Use in Agro-ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2985-6_10

Download citation

Publish with us

Policies and ethics