Advertisement

Introduction

Chapter
  • 58 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Pharmaceuticals include one or multiple bioactive ingredients that cure and/or alleviate symptoms in human or veterinary diseases. Many of these ingredients are excreted from the body in an unmetabolized form and/or as active metabolites via urine and/or feces. High chemical stability of the ingredients is crucial for quality control of pharmaceuticals during long-term storage before administration. However, in terms of the impacts on the natural environment and ecosystems, stable bioactive substances with high bioactivity may have unfavorable effects on non-target species after excretion from patients or treated animals. To overcome these disadvantages, drug design to turn off bioactivity after release into the environment is needed.

Keywords

Environmental impact GnRH Neurokinin B Neurokinin-3 receptor antagonist 

References

  1. 1.
    (a) Santos LHMLM, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175:45–95. (b) Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35:803–814. (c) Tiwari B, Sellamuthu B, Ouarda Y, Drogui P, Tyagi RD, Buelna G (2017) Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour Technol 224:1–12. (d) Balakrishna K, Rath A, Praveenkumarreddy Y, Guruge KS (2017) A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol Environ Saf 137:113–120Google Scholar
  2. 2.
    (a) Batt AL, Bruce IB, Aga DS (2006) Identification of a new antidepressant and its glucuronide metabolite in water samples using liquid chromatography/quadrupole time-of-flight mass spectrometry. Environ Pollut 142:295–302. (b) Ferrer I, Thurman EM (2010) Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Anal Chem 82:8161–8168. (c) Vieno N, Sillanpää M (2014) Fate of diclofenac in municipal wastewater treatment plant–a review. Environ Int 69:28–39. (d) Ting YF, Praveena SM (2017) Sources, mechanisms, and fate of steroid estrogens in wastewater treatment plants: a mini review. Environ Monit Assess 189:178Google Scholar
  3. 3.
    (a) Larsson DGJ, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755. (b) Li D, Yang M, Hu J, Zhang J, Liu R, Gu X, Zhang Y, Wang Z (2009) Antibiotic-resistance profile in environmental bacteria isolated from penicillin production wastewater treatment plant and the receiving river. Environ Microbiol 11:1506–1517. (c) Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegård B, Söderström H, Larsson DGJ (2011) Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS One 6:e17038Google Scholar
  4. 4.
    Järhult JD, Muradrasoli S, Wahlgren J, Söderström H, Orozovic G, Gunnarsson G, Bröjer C, Latorre-Margalef N, Fick J, Grabic R, Lennerstrand J, Waldenström J, Lundkvist Å, Olsen B (2011) Environmental levels of the antiviral oseltamivir induce development of resistance mutation H274Y in influenza A/H1N1 virus in mallards. PLoS One 6:e24742Google Scholar
  5. 5.
    Li D, Yu T, Zhang Y, Yang M, Li Z, Liu M, Qi R (2010) Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production wastewater treatment plant and the receiving river. Appl Environ Microbiol 6:3444–3451Google Scholar
  6. 6.
    (a) Huang CH, Sedlak DL (2001) Analysis of estrogenic hormones in municipal wastewater effluent and surface water using enzyme‐linked immunosorbent assay and gas chromatography/tandem mass spectrometry. Environ Toxicol Chem 20:133–139. (b) Sanchez W, Sremski W, Piccini B, Palluel O, Maillot-Aréchal E, Betoulle S, Jaffal A, Aït-Aïssa S, Brion F, Thybaud E, Hinfray N, Porcher JM (2011) Adverse effects in wild fish living downstream from pharmaceutical manufacture discharges. Environ Int 37:1342–1348. (c) Aris AZ, Shamsuddin AS, Praveena SM (2014) Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. Environ Int 69:104–119Google Scholar
  7. 7.
    Dussault ÈB, Balakrishnan VK, Borgmann U, Solomon KR, Sibley PK (2009) Bioaccumulation of the synthetic hormone 17α-ethinylestradiol in the benthic invertebrates Chironomus tentans and Hyalella azteca. Ecotoxicol Environ Saf 72:1635–1641Google Scholar
  8. 8.
    Brooks BW, Cambliss CK, Stanley JK, Ramirez A, Banks KE, Johnson RD, Lewis RJ (2005) Determination of select antidepressants in fish from an effluent-dominated stream. Environ Toxicol Chem 24:464–469Google Scholar
  9. 9.
    Richmond EK, Rosi EJ, Walters DM, Brodin T, Sundelin A, Grace MR, Hamilton SK (2018) A diverse suite of pharmaceuticals contaminates stream and riparian food webs. Nat Commun 9:4491Google Scholar
  10. 10.
    (a) Painter MM, Buerkley MA, Julius ML, Vajda AM, Norris DO, Barber LB, Furlong ET, Schultz MM, Schoenfuss HL (2009) Antidepressants at environmentally relevant concentrations affect predator avoidance behavior of larval fathead minnows (Pimephales promelas). Environ Toxicol Chem 28:2677–2684. (b) Bisesi JH, Bridges W, Klaine SJ (2014) Reprint of: Effects of the antidepressant venlafaxine on fish brain serotonin and predation behavior. Aquat Toxicol 151:88–96Google Scholar
  11. 11.
    Velema WA, Szymanski W, Feringa BL (2014) Photopharmacology: beyond proof of principle. J Am Chem Soc 136:2178–2191Google Scholar
  12. 12.
    Fortin S, Charest-Morin X, Turcotte V, Lauvaux C, Lacroix J, Côté M-F, Gobeil S, Gaudreault RC (2017) Activation of phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates prodrugs by CYP1A1 as new antimitotics targeting breast cancer cells. J Med Chem 60:4963–4982Google Scholar
  13. 13.
    Redasani VK, Bari SB (2012) Synthesis and evaluation of mutual prodrugs of ibuprofen with menthol, thymol and eugenol. Eur J Med Chem 56:134–138Google Scholar
  14. 14.
    Abet V, Filace F, Recio J, Alvarez-Builla J, Burgos C (2017) Prodrug approach: an overview of recent cases. Eur J Med Chem 127:810–827Google Scholar
  15. 15.
    (a) Morey TE, Seubert CN, Raatikainen MJP, Martynyuk AE, Druzgala P, Milner P, Gonzalez MD, Dennis DM (2001) Structure-activity relationships and electrophysiological effects of short-acting amiodarone homologs in guinea pig isolated heart. J Pharmacol Exp Ther 297:260–266. (b) Ezekowitz MD, Nagarakanti R, Lubinski A, Bandman O, Canafax D, Ellis DJ, Milner PG, Ziola M, Thibault B, Hohnloser SH (2012) A randomized trial of budiodarone in paroxysmal atrial fibrillation. J Interv Card Electrophysiol 34:1–9Google Scholar
  16. 16.
    (a) Gafar MO, Dagash YMI, Elhag A, Hassan YO (2011) Residual effect of malathion (Organophosphate) and Sevin (Carbamate) application on potato (Solanum tuberosum). Am J Exp Agric 1:226–230. (b) Gafar MO, Elhag AZ, Abdelgader MA (2013) Impact of pesticides malathion and sevin on growth of snake cucumber (Cucumis melo L. var. Flexuosus) and soil. Univers J Agric Res 1:81–84Google Scholar
  17. 17.
    (a) Edwards FL, Tchounwou PB (2005) Environmental toxicology and health effects associated with methyl parathion exposure–a scientific review. Int J Environ Res Public Health 2:430–441. (b) Bhanti M, Taneja A (2007) Contamination of vegetables of different seasons with organophosphorous pesticides and related health risk assessment in northern India. Chemosphere 69:63–68Google Scholar
  18. 18.
    Raha P, Das AK (1990) Photodegradation of carbofuran. Chemosphere 21:99–106Google Scholar
  19. 19.
    Greenhalgh R, Dhawan KL, Weinberger P (1980) Hydrolysis of fenitrothion in model and natural aquatic systems. J Agric Food Chem 28:102–105Google Scholar
  20. 20.
    Kaufman DD, Blake J (1970) Degradation of atrazine by soil fungi. Soil Biol Biochem 2:73–80Google Scholar
  21. 21.
    Regoli D, Boudon A, Fauchére J-L (1994) Receptors and antagonists for substance P and related peptides. Pharmacol Rev 46:551–599Google Scholar
  22. 22.
    (a) Keegan KD, Woodruff GN, Pinnock RD (1992) The selective NK3 receptor agonist senktide excites a subpopulation of dopamine-sensitive neurones in the rat substantia nigra pars compacta in vitro. Br J Pharmacol 105:3–5. (b) Humpel C, Saria A (1993) Intranigral injection of selective neurokinin-1 and neurokinin-3 but not neurokinin-2 receptor agonists biphasically modulate striatal dopamine metabolism but not striatal preprotachykinin-A mRNA in the rat. Neurosci Lett 157:223–226. (c) Stoessl A (1994) Localization of striatal and nigral tachykinin receptors in the rat. J Brain Res 646:13–18Google Scholar
  23. 23.
    (a) Spooren W, Riemer C, Meltzer H (2005) NK3 receptor antagonists: the next generation of antipsychotics? Nat Rev 4:967–975. (b) Griebel G, Beeské S (2012) Is there still a future for neurokinin 3 receptor antagonists as potential drugs for the treatment of psychiatric diseases? Pharmacol Ther 133:116–123Google Scholar
  24. 24.
    For a review see: Millar RP, Newton CL (2013) Current and future applications of GnRH, kisspeptin and neurokinin B analogues. Nat Publ Gr 9:451–466Google Scholar
  25. 25.
    Wakabayashi Y, Yamamura T, Sakamoto K, Mori Y, Okamura H (2013) Electrophysiological and morphological evidence for synchronized GnRH pulse generator activity among kisspeptin/neurokinin B/dynorphin A (KNDy) neurons in goats. J Reprod Dev 59:40–48Google Scholar
  26. 26.
    Wakabayashi Y, Nakada T, Murata K, Ohkura S, Mogi K, Navarro VM, Clifton DK, Mori Y, Tsukamura H, Maeda K, Steiner RA, Okamura H (2010) Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone secretion in the goat. J Neurosci 30:3124–3132Google Scholar
  27. 27.
    Navarro VM (2012) New insights into the control of pulsatile GnRH release: the role of Kiss1/neurokinin B neurons. Front Endocrinol 3:48Google Scholar
  28. 28.
    Kinsey-Jones JS, Grachev P, Li XF, Lin YS, Milligan SR, Lightman SL, O’Byrne KT (2016) The Inhibitory effects of neurokinin B on GnRH pulse generator frequency in the female rat. Neuroendocrinology 153:307–315Google Scholar
  29. 29.
    Misu R, Oishi S, Yamada A, Yamamura T, Matsuda F, Yamamoto K, Noguchi T, Ohno H, Okamura H, Ohkura S, Fujii N (2014) Development of novel neurokinin 3 receptor (NK3R) selective agonists with resistance to proteolytic degradation. J Med Chem 57:8646–8651Google Scholar
  30. 30.
    Misu R, Yamamoto K, Yamada A, Noguchi T, Ohno H, Yamamura T, Okamura H, Matsuda F, Ohkura S, Oishi S, Fujii N (2015) Structure–activity relationship study on senktide for development of novel potent neurokinin-3 receptor selective agonists. MedChemComm 6:469–476Google Scholar
  31. 31.
    Emonds-Alt X, Bichonl D, Ducouxl JP, Heaulmel M, Milouxz B, Ponceletl M, Proiettol V, Van Broeckl D, Vilainl P, Neilat G, Soubrié P, Le Furl G, Breliébel JC (1995) SR142801 the first potent non-peptide antagonist of the tachykinin NK3 receptor. Life Sci 56:27–32Google Scholar
  32. 32.
    (a) Giardina GAM, Sarau HM, Farina C, Medhurst AD, Grugni M, Raveglia LF, Schmidt DB, Rigolio R, Luttmann M, Vecchietti V, Hay DWP (1997) Discovery of a novel class of selective non-peptide antagonists for the human neurokinin-3 receptor. 1. Identification of the 4-quinolinecarboxamide framework. J Med Chem 3:1794–1807. (b) Giardina GAM, Raveglia LF, Grugni M, Sarau HM, Farina C, Medhurst AD, Graziani D, Schmidt DB, Rigolio R, Luttmann M, Cavagnera S, Foley JJ, Vecchietti V, Hay DWP (1999) Discovery of a novel class of selective non-peptide antagonists for the human neurokinin-3 receptor. 2. Identification of (S)-N-(1-phenylpropyl)-3-hydroxy-2-phenylquinoline-4-carboxamide (SB 223412). J Med Chem 42:1053–1065Google Scholar
  33. 33.
    (a) Meltzer H, Prus A (2006) NK3 receptor antagonists for the treatment of schizophrenia. Drug Discov Today Ther Strateg 3:555–560. (b) Houghton LA, Cremonini F, Camilleri M, Busciglio I, Fell C, Cox V, Alpers DH, Dewit OE, Dukes GE, Gray E, Lea R, Zinsmeister AR, Whorwell P (2007) Effect of the NK3 receptor antagonist, talnetant, on rectal sensory function and compliance in healthy humans. J Neurogastroenterol Motil 19:732–743. (c) Liem-Moolenaar M, Gray FA, de Visser SJ, Franson KL, Schoemaker JAJ, Cohen AF, van Gerven JMA (2010) Psychomotor and cognitive effects of a single oral dose of talnetant (SB223412) in healthy volunteers compared with placebo or haloperidol. J Psychopharmacol 24:73–82Google Scholar
  34. 34.
    Litman RE, Smith MA, Desai DG, Simpson T, Sweitzer D, Kanes SJ (2014) The selective neurokinin 3 antagonist AZD2624 does not improve symptoms or cognition in schizophrenia. J Clin Psychopharmacol 34:199–204Google Scholar
  35. 35.
    (a) George JT, Kakkar R, Marshall J, Scott ML, Finkelman RD, Ho TW, Veldhuis J, Skorupskaite K, Anderson RA, Mcintosh S, Webber L (2016) Neurokinin B receptor antagonism in women with polycystic ovary syndrome: a randomized, placebo-controlled trial. J Clin Endocrinol Metab 101:4313–4321. (b) Xu H, Li J, Webber L, Kakkar R, Chen Y, Al-Huniti N (2016) Population pharmacokinetic and pharmacodynamic modeling of AZD4901 and simulation to support dose selection for the phase 2a study. J Clin Pharmacol 56:999–1008Google Scholar
  36. 36.
    (a) Hoveyda HR, Fraser GL, Roy M-O, Dutheuil G, Batt F, El Bousmaqui M, Korac J, Lenoir F, Lapin A, Noël S, Blanc S (2015) Discovery and optimization of novel antagonists to the human neurokinin‑3 receptor for the treatment of sex-hormone disorders (Part I). J Med Chem 58:3060–3082. (b) Hoveyda HR, Fraser GL, Dutheuil G, El Bousmaqui M, Korac J, Lenoir F, Lapin A, Noël S (2015) Optimization of novel antagonists to the neurokinin‑3 receptor for the treatment of sex-hormone disorders (Part II). ACS Med Chem Lett 6:736–740Google Scholar
  37. 37.
    Fraser GL, Hoveyda HR, Clarke IJ, Ramaswamy S, Plant TM, Rose C, Millar RP (2015) The NK3 receptor antagonist ESN364 interrupts pulsatile LH secretion and moderates levels of ovarian hormones throughout the menstrual cycle. Endocrinology 156:4214–4225Google Scholar
  38. 38.
    Fraser GL, Ramael S, Hoveyda HR, Gheyle L, Combalbert J (2016) The NK3 receptor antagonist ESN364 suppresses sex hormones in men and women. J Clin Endocrinol Metab 101:417–426Google Scholar
  39. 39.
    Nakamura S, Ito Y, Yamamoto K, Takahashi C, Dai M, Tanahashi M, Uenoyama Y, Tsukamura H, Oishi S, Maeda K, Matsuda F (2017) SB223412, a neurokinin-3 receptor-selective antagonist, suppresses testosterone secretion in male guinea pigs. Theriogenology 102:183–189Google Scholar
  40. 40.
    (a) Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1:34–45. (b) Weckermann D, Harzmann R (2004) Hormone therapy in prostate cancer: LHRH antagonists versus LHRH analogues. Eur Urol 46:279–284Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan

Personalised recommendations