Skip to main content

Applications of Embedded Metal-mesh Transparent Electrodes in Flexible Electronic Devices

  • Chapter
  • First Online:
Novel Embedded Metal-mesh Transparent Electrodes

Part of the book series: Springer Theses ((Springer Theses))

  • 274 Accesses

Abstract

This chapter summarizes the applications of EMTEs in flexible bifacial DSSCs and FTTHs. A highly efficient nanostructured flexile transparent CE fabricated by a facile and low-cost method for DSSC devices is reported. This hybrid CE consists of a nickel micro-EMTE with in situ decorated PtNPs and fully embedded in a flexible transparent substrate, and demonstrates superior optoelectronic performances and excellent mechanical flexibility under bending stress. The in situ loading of PtNPs avoids the wastage of expensive platinum material, minimizes loss in optical transparency and facilities the high electro-catalytic activity for triiodide reduction. The synergetic features of the proposed hybrid PtNP-EMTE used as CEs for flexible DSSCs enable improved power conversion efficiency. When a Ti-foil is used as the photo-anode, unifacial flexible DSSCs with PtNP-EMTE CE exhibits an excellent PCE of 6.91%. In flexible bifacial DSSCs using PtNP-coated ITO-PEN as photo-anode and the PtNP-EMTE as CE, remarkable PCEs of 5.67% (front-side illumination) and 4.87% (rear side illumination) are recorded. The front-to-rear PCE ratio of our bifacial DSSC approaches 85%, which is among the highest in published literature. These promising results show the great potential of this hybrid transparent CE in scalable production and commercialization of low-cost and efficient flexible DSSCs. Based on LEIT fabricated micro-EMTEs, a transparent and flexible thin-film heater is also fabricated, demonstrating excellent performance compared with existing products. With superior performances, our micro-EMTEs and nano-EMTEs are potential candidates for other flexible electronic devices as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaltenbrunner M, Adam G, Glowacki ED, Drack M, Schwodiauer R, Leonat L, Apaydin DH, Groiss H, Scharber MC, White MS, Sariciftci NS, Bauer S (2015) Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat Mater 14(10):1032–1039. https://doi.org/10.1038/nmat4388, http://www.nature.com/nmat/journal/v14/n10/abs/nmat4388.html#supplementary-information

    Article  CAS  Google Scholar 

  2. Gustafsson G, Cao Y, Treacy GM, Klavetter F, Colaneri N, Heeger AJ (1992) Flexible light-emitting diodes made from soluble conducting polymers. Nat 357(6378):477–479

    Article  CAS  Google Scholar 

  3. Gelinck GH, Huitema HEA, van Veenendaal E, Cantatore E, Schrijnemakers L, van der Putten JBPH, Geuns TCT, Beenhakkers M, Giesbers JB, Huisman B-H, Meijer EJ, Benito EM, Touwslager FJ, Marsman AW, van Rens BJE, de Leeuw DM (2004) Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater 3(2):106–110

    Article  CAS  Google Scholar 

  4. Ahn J-H, Hong BH (2014) Graphene for displays that bend. Nat Nano 9(10):737–738. https://doi.org/10.1038/nnano.2014.226

    Article  Google Scholar 

  5. Llordes A, Wang Y, Fernandez-Martinez A, Xiao P, Lee T, Poulain A, Zandi O, Saez Cabezas CA, Henkelman G, Milliron DJ (2016) Linear topology inamorphous metal oxide electrochromic networks obtained via low-temperature solution processing. Nat Mater 15(12):1267–1273. https://doi.org/10.1038/nmat4734http://www.nature.com/nmat/journal/v15/n12/abs/nmat4734.html#supplementary-information

    Article  Google Scholar 

  6. Park JH, Hwang,G-T, Kim S, Seo J, Park H-J, Yu K, Kim T-S, Lee KJ (2017) Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester. Adv Mater 29(5):1603473-n/a. https://doi.org/10.1002/adma.201603473

    Article  Google Scholar 

  7. Yang Y, Jeong S, Hu L, Wu H, Lee SW, Cui Y (2011) Transparent lithium-ion batteries. Proc Natl Acad Sci 108(32):13013–13018. https://doi.org/10.1073/pnas.1102873108

    Article  Google Scholar 

  8. Chen T, Xue Y, Roy AK, Dai L (2014) Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 8(1):1039–1046. https://doi.org/10.1021/nn405939w

    Article  Google Scholar 

  9. Gupta R, Rao KDM, Kiruthika S, Kulkarni GU (2016) Visibly Transparent Heaters. ACS Appl Mater Interfaces 8(20):12559–12575. https://doi.org/10.1021/acsami.5b11026

    Article  CAS  Google Scholar 

  10. Li Y, Lee D-K, Kim JY, Kim B, Park N-G, Kim K, Shin J-H, Choi I-S, Ko MJ (2012) Highly durable and flexible dye-sensitized solar cells fabricatedon plastic substrates: PVDF-nanofiber-reinforced TiO2 photoelectrodes. Energy Environ Sci 5(10):8950–8957. https://doi.org/10.1039/C2EE21674D

    Article  CAS  Google Scholar 

  11. Peter LM (2011) The Grätzel cell: where next? J Phys Chem Lett 2(15):1861–1867. https://doi.org/10.1021/jz200668q

    Article  CAS  Google Scholar 

  12. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with Cobalt (ii/iii)–Based redox electrolyte exceed 12 percent efficiency. Sci 334(6056):629–634. https://doi.org/10.1126/science.1209688

    Article  CAS  Google Scholar 

  13. Yoo K, Kim J-Y, Lee JA, Kim JS, Lee D-K, Kim K, Kim JY, Kim B, Kim H, Kim WM, Kim JH, Ko MJ (2015) Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates. ACS Nano 9(4):3760–3771. https://doi.org/10.1021/acsnano.5b01346

    Article  CAS  Google Scholar 

  14. Gong Y, Li C, Huang X, Luo Y, Li D, Meng Q, Iversen BB (2013) Simple method for manufacturing pt counter electrodes on conductive plastic substratesfor dye-sensitized solar cells. ACS App Mater Inter 5(3):795–800. https://doi.org/10.1021/am302360g

    Article  CAS  Google Scholar 

  15. Hübner A, Aberle AG, Hezel R (1997) Novel cost-effective bifacial silicon solar cells with 19.4% front and 18.1% rear efficiency. App Phys Lett 70(8):1008–1010. https://doi.org/10.1063/1.118466

    Article  Google Scholar 

  16. Ito S, Zakeeruddin SM, Comte P, Liska P, Kuang D, Gratzel M (2008) Bifacial Dye-sensitized Solar Cells Based on an Ionic Liquid Electrolyte. Nat Photon 2(11):693–698

    Article  CAS  Google Scholar 

  17. Song D, Li M, Li Y, Zhao X, Jiang B, Jiang Y (2014) Highly transparent and efficient counter electrode using sio2/pedot–pss composite for bifacial dye-sensitized solar cells. ACS Appl Mater Inter 6(10):7126–7132. https://doi.org/10.1021/am500082x

    Article  CAS  Google Scholar 

  18. Wu J, Li Y, Tang Q, Yue G, Lin J, Huang M, Meng L (2014) Bifacial dye-sensitized solar cells: a strategy to enhance overall efficiency based on transparentpolyaniline electrode. Sci Rep 4:4028. https://doi.org/10.1038/srep04028, http://www.nature.com/articles/srep04028#supplementary-information

  19. Hezel R (2003) Novel applications of bifacial solar cells. Progress in Photovoltaics: Res App 11(8):549–556. https://doi.org/10.1002/pip.510

    Article  Google Scholar 

  20. Bu C, Liu Y, Yu Z, You S, Huang N, Liang L, Zhao X-Z (2013) Highly transparent carbon counter electrode prepared via an in situ carbonization method forbifacial dye-sensitized solar cells. ACS Appl Mater Inter 5(15):7432–7438. https://doi.org/10.1021/am4017472

    Article  CAS  Google Scholar 

  21. Yun S, Hagfeldt A, Ma T (2014) Pt-free counter electrode for dye-sensitized solar cells with high efficiency. Adv Mater 26(36):6210–6237. https://doi.org/10.1002/adma.201402056

    Article  CAS  Google Scholar 

  22. Tai Q, Chen B, Guo F, Xu S, Hu H, Sebo B, Zhao X-Z (2011) In Situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells. ACS Nano 5(5):3795–3799. https://doi.org/10.1021/nn200133g

    Article  CAS  Google Scholar 

  23. Balasingam SK, Kang MG, Jun Y (2013) Metal substrate based electrodes for flexible dye-sensitized solar cells: fabrication methods, progress and challenges. Chem Commun 49(98):11457–11475. https://doi.org/10.1039/C3CC46224B

    Article  CAS  Google Scholar 

  24. Lin L-Y, Lee C-P, Vittal R, Ho K-C (2010) Selective conditions for the fabrication of a flexible dye-sensitized solar cell with Ti/TiO2 photoanode. J Power Sources 195(13):4344–4349. https://doi.org/10.1016/j.jpowsour.2010.01.031

    Article  CAS  Google Scholar 

  25. Wang Y, Zhao C, Qin D, Wu M, Liu W, Ma T (2012) Transparent flexible Pt counter electrodes for high performance dye-sensitized solar cells. J Mater Chem 22(41):22155–22159. https://doi.org/10.1039/C2JM35348B

    Article  CAS  Google Scholar 

  26. Zardetto V, Di Giacomo F, Garcia-Alonso D, Keuning W, Creatore M, Mazzuca C, Reale A, Di Carlo A, Brown TM (2013) Fully plastic dye solar cell devices by low-temperature UV-irradiation of both the mesoporous TiO2 photo- and platinized counter-electrodes. Adv Energy Mater 3(10):1292–1298. https://doi.org/10.1002/aenm.201300101

    Article  CAS  Google Scholar 

  27. Hauch A, Georg A (2001) Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochimica Acta 46(22):3457–3466. https://doi.org/10.1016/S0013-4686(01)00540-0

    Article  CAS  Google Scholar 

  28. Hashmi G, Miettunen K, Peltola T, Halme J, Asghar I, Aitola K, Toivola M, Lund P (2011) Review of materials and manufacturing options for large area flexible dye solar cells. Renew Sustain Energy Rev 15(8):3717–3732. https://doi.org/10.1016/j.rser.2011.06.004

    Article  CAS  Google Scholar 

  29. Lee K-M, Hsu C-Y, Chen P-Y, Ikegami M, Miyasaka T, Ho K-C (2009) Highly Porous PProDOT-Et2 film as counter electrode for plastic dye-sensitized solar cells. Phys Chem 11(18):3375–3379. https://doi.org/10.1039/B823011K

    Article  CAS  Google Scholar 

  30. Pringle JM, Armel V, MacFarlane DR (2010) Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells. Chem Commun 46(29):5367–5369. https://doi.org/10.1039/C0CC01400A

    Article  CAS  Google Scholar 

  31. Miettunen K, Toivola M, Hashmi G, Salpakari J, Asghar I, Lund P (2011) A carbon gel catalyst layer for the roll-to-roll production of dye solar cells. Carbon 49(2):528–532. https://doi.org/10.1016/j.carbon.2010.09.052

    Article  CAS  Google Scholar 

  32. Burschka J, Brault V, Ahmad S, Breau L, Nazeeruddin MK, Marsan B, Zakeeruddin SM, Gratzel M (2012) Influence of the counter electrode on the photovoltaic performance of dye-sensitized solar cells using a disulfide/thiolate redox electrolyte. Energy Environ Sci 5(3):6089–6097. https://doi.org/10.1039/C2EE03005E

    Article  CAS  Google Scholar 

  33. Aitola K, Halme J, Feldt S, Lohse P, Borghei M, Kaskela A, Nasibulin AG, Kauppinen EI, Lund PD, Boschloo G, Hagfeldt A (2013) Highly catalyticcarbon nanotube counter electrode on plastic for dye solar cells utilizing cobalt-based redox mediator. Electrochimica Acta 111:206–209. https://doi.org/10.1016/j.electacta.2013.07.202

    Article  CAS  Google Scholar 

  34. Qin Q, Zhang R (2013) A novel conical structure of polyaniline nanotubes synthesized on ito-pet conducting substrate by electrochemical method. Electrochimica Acta 89:726–731. https://doi.org/10.1016/j.electacta.2012.11.107

    Article  CAS  Google Scholar 

  35. Hung K-H, Chan C-H, Wang H-W (2014) Flexible tco-free counter electrode for dye-sensitized solar cells using graphene nanosheets from a Ti–Ti(III) acid solution. Renew Energy 66:150–158. https://doi.org/10.1016/j.renene.2013.12.001

    Article  CAS  Google Scholar 

  36. Hung K-H, Wang H-W (2014) A freeze-dried graphene counter electrode enhances the performance of dye-sensitized solar cells. Thin Solid Films 550:515–520. https://doi.org/10.1016/j.tsf.2013.10.129

    Article  CAS  Google Scholar 

  37. Xu X, Yang W, Li Y, Tu Z, Wu S, Ma X, Yang F, Zhang L, Chen S, Wang A, Liu H, Richard P (2015) Heteroatom-doped graphene-like carbon filmsprepared by chemical vapour deposition for bifacial dye-sensitized solar cells. Chem Eng J 267:289–296. https://doi.org/10.1016/j.cej.2015.01.028

    Article  CAS  Google Scholar 

  38. Yang W, Xu X, Tu Z, Li Z, You B, Li Y, Raj SI, Yang F, Zhang L, Chen S, Wang A (2015) Nitrogen plasma modified CVD grown graphene as counterelectrodes for bifacial dye-sensitized solar cells. Electrochimica Acta 173:715–720. https://doi.org/10.1016/j.electacta.2015.05.143

    Article  CAS  Google Scholar 

  39. Chen L, Tan W, Zhang J, Zhou X, Zhang X, Lin Y (2010) Fabrication of high performance Pt counter electrodes on conductive plastic substrate for flexible dyesensitized solar cells. Electrochimica Acta 55(11):3721–3726. https://doi.org/10.1016/j.electacta.2010.01.108

    Article  CAS  Google Scholar 

  40. Fang X, Ma T, Guan G, Akiyama M, Kida T, Abe E (2004) Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dyesensitizedsolar cell. J Electroanal Chem 570(2):257–263. https://doi.org/10.1016/j.jelechem.2004.04.004

    Article  CAS  Google Scholar 

  41. Fang X, Ma T, Akiyama M, Guan G, Tsunematsu S, Abe E (2005) Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells. Thin Solid Films 472(1–2):242–245. https://doi.org/10.1016/j.tsf.2004.07.083

    Article  CAS  Google Scholar 

  42. Garcia-Alonso D, Zardetto V, Mackus AJM, De Rossi F, Verheijen MA, Brown TM, Kessels WMM, Creatore M (2014) Atomic layer deposition of highly transparent platinum counter electrodes for metal/polymer flexible dye-sensitized solar cells. Adv Energy Mater 4(4):1300831–n/a. https://doi.org/10.1002/aenm.201300831

    Article  Google Scholar 

  43. Yang L, Wu L, Wu M, Xin G, Lin H, Ma T (2010) High-efficiency flexible dye-sensitized solar cells fabricated by a novel friction-transfer technique. Electrochem Commun 12(7):1000–1003. https://doi.org/10.1016/j.elecom.2010.05.026

    Article  CAS  Google Scholar 

  44. Fu N, Xiao X, Zhou X, Zhang J, Lin Y (2012) Electrodeposition of platinum on plastic substrates as counter electrodes for flexible dye-sensitized solar cells. J Phys Chem C 116(4):2850–2857. https://doi.org/10.1021/jp206676s

    Article  CAS  Google Scholar 

  45. Hasin P, Alpuche-Aviles MA, Li Y, Wu Y (2009) Mesoporous Nb-Doped TiO2 as Pt support for counter electrode in dye-sensitized solar cells. J Phys Chem C 113(17):7456–7460. https://doi.org/10.1021/jp810678a

    Article  CAS  Google Scholar 

  46. Hong S, Yeo J, Kim G, Kim D, Lee H, Kwon J, Lee H, Lee P, Ko SH (2013) Nonvacuum, maskless fabrication of a flexible metal grid transparentconductor by low-temperature selective laser sintering of nanoparticle ink. ACS Nano 7(6):5024–5031. https://doi.org/10.1021/nn400432z

    Article  CAS  Google Scholar 

  47. Wu H, Kong D, Ruan Z, Hsu P-C, Wang S, Yu Z, Carney TJ, Hu L, Fan S, Cui Y (2013) A transparent electrode based on a metal nanotrough network. Nat Nano 8(6):421–425. https://doi.org/10.1038/nnano.2013.84, http://www.nature.com/nnano/journal/v8/n6/abs/nnano.2013.84.html#supplementary-information

    Article  CAS  Google Scholar 

  48. Han B, Pei K, Huang Y, Zhang X, Rong Q, Lin Q, Guo Y, Sun T, Guo C, Carnahan D, Giersig M, Wang Y, Gao J, Ren Z, Kempa K (2014) Uniform Self-forming metallic network as a high-performance transparent conductive electrode. Adv Mater 26(6):873–877. https://doi.org/10.1002/adma.201302950

    Article  CAS  Google Scholar 

  49. Khan A, Lee S, Jang T, Xiong Z, Zhang C, Tang J, Guo LJ, Li W-D (2016) High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process. Small 12(22):3021–3030. https://doi.org/10.1002/smll.201600309

    Article  CAS  Google Scholar 

  50. Huang J, Li G, Yang Y (2008) A Semi-transparent plastic solar cell fabricated by a lamination process. Adv Mater 20(3):415–419. https://doi.org/10.1002/adma.200701101

    Article  CAS  Google Scholar 

  51. Kim A, Won Y, Woo K, Kim C-H, Moon J (2013) Highly transparent low resistance ZnO/Ag Nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 7(2):1081–1091. https://doi.org/10.1021/nn305491x

    Article  CAS  Google Scholar 

  52. Margulis GY, Christoforo MG, Lam D, Beiley ZM, Bowring AR, Bailie CD, Salleo A, McGehee MD (2013) Spray deposition of silver nanowire electrodes for semitransparent solid-state dye-sensitized solar cells. Adv Energy Mater 3(12):1657–1663. https://doi.org/10.1002/aenm.201300660

    Article  CAS  Google Scholar 

  53. Bryant D, Greenwood P, Troughton J, Wijdekop M, Carnie M, Davies M, Wojciechowski K, Snaith HJ, Watson T, Worsley D (2014) A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells. Adv Mater 26(44):7499–7504. https://doi.org/10.1002/adma.201403939

    Article  CAS  Google Scholar 

  54. Mao L, Chen Q, Li Y, Li Y, Cai J, Su W, Bai S, Jin Y, Ma C-Q, Cui Z, Chen L (2014) Flexible Silver Grid/PEDOT:PSS hybrid electrodes for large area inverted polymer solar cells. Nano Energy 10:259–267. https://doi.org/10.1016/j.nanoen.2014.09.007

    Article  CAS  Google Scholar 

  55. Li Y, Meng L, Yang Y, Xu G, Hong Z, Chen Q, You J, Li G, Yang Y, Li Y (2016) High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat Commun 7. https://doi.org/10.1038/ncomms10214

  56. Servaites JD, Yeganeh S, Marks TJ, Ratner MA (2010) Efficiency enhancement in organic photovoltaic cells: consequences of optimizing series resistance. Adv Funct Mater 20(1):97–104. https://doi.org/10.1002/adfm.200901107

    Article  CAS  Google Scholar 

  57. Rowell MW, McGehee MD (2011) Transparent electrode requirements for thin film solar cell modules. Energy Environ Sci 4(1):131–134. https://doi.org/10.1039/C0EE00373E

    Article  CAS  Google Scholar 

  58. Khan A, Huang Y-T, Miyasaka T, Ikegami M, Feng S-P, Li W-D (2017) Solution-processed transparent nickel-mesh counter electrode with in-Situ electrodeposited platinum nanoparticles for full-plastic bifacial dye-sensitized solar cells. ACS Appl Mater Inter 9(9);8083–8091. https://doi.org/10.1021/acsami.6b14861

    Article  CAS  Google Scholar 

  59. Khan A, Li W (2016) Transparent conductive films with embedded metal grids. Google Patents

    Google Scholar 

  60. Khan A, Lee S, Jang T, Xiong Z, Zhang C, Tang J, Guo LJ, Li W-D (2017) Scalable solution-processed fabrication strategy for high-performance. flexible, transparent electrodes with embedded metal mesh. 124:e56019. https://doi.org/10.3791/56019

    Article  CAS  Google Scholar 

  61. Snaith HJ, Schmidt-Mende L (2007) Advances in liquid-electrolyte and solid-state dye-sensitized solar cells. Adv Mat 19(20):3187–3200. https://doi.org/10.1002/adma.200602903

    Article  CAS  Google Scholar 

  62. Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photon 6(3):162–169

    Article  CAS  Google Scholar 

  63. Kolics A, Wieckowski A (2001) Adsorption of bisulfate and sulfate anions on a Pt(111) electrode. J Phys Chem B 105(13):2588–2595. https://doi.org/10.1021/jp003536f

    Article  CAS  Google Scholar 

  64. Zhang H, Zhou W, Du Y, Yang P, Wang C (2010) One-step electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanolelectro-oxidation. Electrochem Commun 12(7):882–885. https://doi.org/10.1016/j.elecom.2010.04.011

    Article  CAS  Google Scholar 

  65. Hsieh T-L, Chen H-W, Kung C-W, Wang C-C, Vittal R, Ho K-C (2012) A highly efficient dye-sensitized solar cell with a platinum nanoflowers counterelectrode. J Mater Chem 22(12):5550–5559. https://doi.org/10.1039/C2JM14623A

    Article  CAS  Google Scholar 

  66. Yoon YH, Song JW, Kim D, Kim J, Park JK, Oh SK, Han CS (2007) Transparent film heater using single-walled carbon nanotubes. Adv Mater 19(23):4284–4287. https://doi.org/10.1002/adma.200701173

    Article  CAS  Google Scholar 

  67. Kang J, Kim H, Kim KS, Lee S-K, Bae S, Ahn J-H, Kim Y-J, Choi J-B, Hong BH (2011) High-performance graphene-based transparent flexible heaters. Nano Lett 11(12):5154–5158. https://doi.org/10.1021/nl202311v

    Article  CAS  Google Scholar 

  68. Sui D, Huang Y, Huang L, Liang J, Ma Y, Chen Y (2011) Flexible and transparent electrothermal film heaters based on graphene materials. Small 7(22):3186–3192. https://doi.org/10.1002/smll.201101305

    Article  CAS  Google Scholar 

  69. Kim T, Kim YW, Lee HS, Kim H, Yang WS, Suh KS (2013) Uniformly Interconnected Silver-Nanowire Networks for Transparent Film Heaters. Adv Funct Mater 23(10):1250–1255. https://doi.org/10.1002/adfm.201202013

    Article  CAS  Google Scholar 

  70. Kamalisarvestani M, Saidur R, Mekhilef S, Javadi FS (2013) Performance, materials and coating technologies of thermochromic thin films on smart windows. Renew Sustain Energy Rev 26:353–364. https://doi.org/10.1016/j.rser.2013.05.038

    Article  CAS  Google Scholar 

  71. Liu L, Ma W, Zhang Z (2011) Macroscopic carbon nanotube assemblies: preparation, properties, and potential applications. Small 7(11):1504–1520. https://doi.org/10.1002/smll.201002198

    Article  CAS  Google Scholar 

  72. Bae JJ, Lim SC, Han GH, Jo YW, Doung DL, Kim ES, Chae SJ, Huy TQ, Van Luan N, Lee YH (2012) Heat dissipation of transparent graphene defoggers. Adv Funct Mater 22(22):4819–4826. https://doi.org/10.1002/adfm.201201155

    Article  CAS  Google Scholar 

  73. Yun S, Niu X, Yu Z, Hu W, Brochu P, Pei Q (2012) Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation. Adv Mater 24(10):1321–1327. https://doi.org/10.1002/adma.201104101

    Article  CAS  Google Scholar 

  74. Jang H-S, Jeon SK, Nahm SH (2011) The manufacture of a transparent film heater by spinning multi-walled carbon nanotubes. Carbon 49(1):111–116. https://doi.org/10.1016/j.carbon.2010.08.049

    Article  CAS  Google Scholar 

  75. Celle C, Mayousse C, Moreau E, Basti H, Carella A, Simonato J-P (2012) Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res 5(6):427–433. https://doi.org/10.1007/s12274-012-0225-2

    Article  CAS  Google Scholar 

  76. Gupta R, Rao KDM, Srivastava K, Kumar A, Kiruthika S, Kulkarni GU (2014) spray coating of crack templates for the fabrication of transparent conductors and heaters on flat and curved surfaces. ACS Appl Mater Interfaces 6(16):13688–13696. https://doi.org/10.1021/am503154z

    Article  CAS  Google Scholar 

  77. Huang Q, Shen W, Fang X, Chen G, Guo J, Xu W, Tan R, Song W (2015) Highly flexible and transparent film heaters based on polyimide films embedded withsilver nanowires. RSC Adv 5(57):45836–45842. https://doi.org/10.1039/C5RA06529A

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshad Khan .

Appendix: Applications of EMTEs in Flexible Electronic Devices

Appendix: Applications of EMTEs in Flexible Electronic Devices

See Figs. 6.12, 6.13, 6.14, 6.15, 6.16, 6.17, 6.18, 6.19, 6.20, 6.21, 6.22, 6.23 and 6.24.

Fig. 6.12
figure 12

Schematic illustration of the profile of pulsed waveform

Fig. 6.13
figure 13

SEM images of nickel micro-EMTE on flexible COC film

Fig. 6.14
figure 14

Optical transparency of blank COC film in UV and visible wavelength range

Fig. 6.15
figure 15

SEM image showing the size of the PtNPs deposited by the pulsed electrodeposition technique

Fig. 6.16
figure 16

SEM-EDS analysis of mesh lines on a PtNP-EMTE. a SEM micrograph of PtNP coated nickel micro-EMTE; b EDS spectrum of the corresponding boxed area in (a); and c elemental quantification table at the corresponding boxed area (in Figure a)

Fig. 6.17
figure 17

Variations in CVs of CEs after the repeated adhesive tape tests on a PtNP-EMTE and b PtNP-coated ITO-PEN

Fig. 6.18
figure 18

XRD characterization of the PtNPs decorated on embedded nickel mesh using puled electro-deposition technique

Fig. 6.19
figure 19

Nyquist plots of the dummy cells utilizing PtNP-EMTEs prepared at different pulsed electrodeposition time

Fig. 6.20
figure 20

Bode plots of the PtNP-EMTE and PtNP-coated ITO-PEN

Fig. 6.21
figure 21

Photograph of PtNP-EMTE based bifacial flexible DSSC in bended form

Fig. 6.22
figure 22

Photovoltaic performance parameters of a bifacial flexible DSSC as function of bending radius by subjecting it to compressive loading and illuminated from front side

Fig. 6.23
figure 23

Photovoltaic performance parameters of a bifacial flexible DSSC as function of bending radius by subjecting it to tensile loading and illuminated from rear side

Fig. 6.24
figure 24

Failure of photo-anode by the delamination of the dye-adsorbed TiO2 film from the ITO-PEN substrate

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, A. (2020). Applications of Embedded Metal-mesh Transparent Electrodes in Flexible Electronic Devices. In: Novel Embedded Metal-mesh Transparent Electrodes. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-2918-4_6

Download citation

Publish with us

Policies and ethics