Skip to main content

Micro Embedded Metal-mesh Transparent Electrodes (Micro-EMTEs) Fabricated by LEIT Strategy

  • Chapter
  • First Online:
Novel Embedded Metal-mesh Transparent Electrodes

Part of the book series: Springer Theses ((Springer Theses))

  • 287 Accesses

Abstract

This chapter presents the LEIT fabrication for micro-EMTEs in detail. The LEIT fabrication approach replaces vacuum-based metal deposition with an electrodeposition and is potentially suitable for high-throughput, large-volume and low-cost production. This approach can be easily adapted to make flexible and even stretchable devices Jang et al. (IEEE transaction on Antenna and Propagation, 2015 [1]). Prototype copper micro-EMTEs are fabricated on flexible COC films with superior electrical conductivity and optical transmittance. FoM (σdcopt) values as high as 1.5 × 104 have been demonstrated on the sample copper micro-EMTEs. This fabrication process has been demonstrated to be able to scale for a larger EMTE area and a wide range of materials. Because of the electrode’s embedded nature, excellent mechanical, chemical, and environmental stability were observed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jang T-H, Zhang C, Youn H-S, Zhou J, Guo LJ (2015) IEEE transaction on antenna and propagation, (in review)

    Google Scholar 

  2. Kim DS, Khan A, Rahman K, Khan S, Kim HC, Choi KH (2011) Drop-on-demand direct printing of colloidal copper nanoparticles by electrohydrodynamic atomization. Mater Manuf Process 26(9):1196–1201. https://doi.org/10.1080/10426914.2011.551956

    Article  CAS  Google Scholar 

  3. Khalid R, Arshad K, Nauman Malik M, Jeongdai J, Kyung-Hyun C (2012) Fine-resolution patterning of copper nanoparticles through electrohydrodynamic jet printing. J Micromech Microeng 22(6):065012

    Article  Google Scholar 

  4. Kim DS, Rahman K, Khan A, Choi KH (2012) Direct fabrication of copper nanoparticle patterns through electrohydrodynamic printing in cone-jet mode. Mater Manuf Process 27(12):1295–1299. https://doi.org/10.1080/10426914.2012.663121

    Article  CAS  Google Scholar 

  5. van de Groep J, Spinelli P, Polman A (2012) Transparent conducting silver nanowire networks. Nano Lett 12(6):3138–3144. https://doi.org/10.1021/nl301045a

    Article  CAS  Google Scholar 

  6. Vosgueritchian M, Lipomi DJ, Bao Z (2012) Highly conductive and transparent pedot: pss films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv Funct Mater 22(2):421–428. https://doi.org/10.1002/adfm.201101775

    Article  CAS  Google Scholar 

  7. Han B, Pei K, Huang Y, Zhang X, Rong Q, Lin Q, Guo Y, Sun T, Guo C, Carnahan D, Giersig M, Wang Y, Gao J, Ren Z, Kempa K (2014) Uniform self-forming metallic network as a high-performance transparent conductive electrode. Adv Mater 26(6):873–877. https://doi.org/10.1002/adma.201302950

    Article  CAS  Google Scholar 

  8. Kim H-J, Lee S-H, Lee J, Lee E-S, Choi J-H, Jung J-H, Jung J-Y, Choi* D-G, (2014) High-durable AgNi nanomesh film for a transparent conducting electrode. Small 10(18):3767–3774. https://doi.org/10.1002/smll.201400911

    Article  CAS  Google Scholar 

  9. Rathmell AR, Bergin SM, Hua Y-L, Li Z-Y, Wiley BJ (2010) The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv Mater 22(32):3558–3563. https://doi.org/10.1002/adma.201000775

    Article  CAS  Google Scholar 

  10. Wu H, Hu L, Rowell MW, Kong D, Cha JJ, McDonough JR, Zhu J, Yang Y, McGehee MD, Cui Y (2010) Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett 10(10):4242–4248. https://doi.org/10.1021/nl102725k

    Article  CAS  Google Scholar 

  11. Zhu R, Chung C-H, Cha KC, Yang W, Zheng YB, Zhou H, Song T-B, Chen C-C, Weiss PS, Li G, Yang Y (2011) Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors. ACS Nano 5(12):9877–9882. https://doi.org/10.1021/nn203576v

    Article  CAS  Google Scholar 

  12. Lee J, Lee P, Lee H, Lee D, Lee SS, Ko SH (2012) Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 4(20):6408–6414. https://doi.org/10.1039/C2NR31254A

    Article  CAS  Google Scholar 

  13. Tokuno T, Nogi M, Jiu J, Sugahara T, Suganuma K (2012) Transparent electrodes fabricated via the self-assembly of silver nanowires using a bubble template. Langmuir 28(25):9298–9302. https://doi.org/10.1021/la300961m

    Article  CAS  Google Scholar 

  14. Zhang D, Wang R, Wen M, Weng D, Cui X, Sun J, Li H, Lu Y (2012) Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J Am Chem Soc 134(35):14283–14286. https://doi.org/10.1021/ja3050184

    Article  CAS  Google Scholar 

  15. Guo H, Lin N, Chen Y, Wang Z, Xie Q, Zheng T, Gao N, Li S, Kang J, Cai D, Peng D-L (2013) Copper nanowires as fully transparent conductive electrodes. Sci Rep 3:2323. https://doi.org/10.1038/srep02323, http://www.nature.com/articles/srep02323#supplementary-information

  16. Wang J, Yan C, Kang W, Lee PS (2014) High-efficiency transfer of percolating nanowire films for stretchable and transparent photodetectors. Nanoscale 6(18):10734–10739. https://doi.org/10.1039/C4NR02462A

    Article  CAS  Google Scholar 

  17. Kang MG, Guo LJ (2007) Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Adv Mater 19(10):1391–1396. https://doi.org/10.1002/adma.200700134

    Article  CAS  Google Scholar 

  18. Kang M-G, Kim M-S, Kim J, Guo LJ (2008) Organic solar cells using nanoimprinted transparent metal electrodes. Adv Mater 20(23):4408–4413. https://doi.org/10.1002/adma.200800750

    Article  Google Scholar 

  19. Zou J, Yip H-L, Hau SK, Jen AK-Y (2010) Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells. Appl Phys Lett 96(20):203301. https://doi.org/10.1063/1.3394679

    Article  CAS  Google Scholar 

  20. Hong S, Yeo J, Kim G, Kim D, Lee H, Kwon J, Lee H, Lee P, Ko SH (2013) Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS Nano 7(6):5024–5031. https://doi.org/10.1021/nn400432z

    Article  CAS  Google Scholar 

  21. Wu H, Kong D, Ruan Z, Hsu P-C, Wang S, Yu Z, Carney TJ, Hu L, Fan S, Cui Y (2013) A transparent electrode based on a metal nanotrough network. Nat. Nano 8(6):421–425. https://doi.org/10.1038/nnano.2013.84, http://www.nature.com/nnano/journal/v8/n6/abs/nnano.2013.84.html#supplementary-information

    Article  CAS  Google Scholar 

  22. Yonghee J, Jihoon K, Doyoung B (2013) Invisible metal-grid transparent electrode prepared by electrohydrodynamic (EHD) jet printing. J Phys D: Appl Phys 46(15):155103

    Article  Google Scholar 

  23. Guo CF, Sun T (2014) Liu Q.; Suo Z.; Ren Z. Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat Commun 5. https://doi.org/10.1038/ncomms4121

  24. Gupta R, Rao KDM, Srivastava K, Kumar A, Kiruthika S, Kulkarni GU (2014) Spray coating of crack templates for the fabrication of transparent conductors and heaters on flat and curved surfaces. ACS Appl Mater Interfaces 6(16):13688–13696. https://doi.org/10.1021/am503154z

    Article  CAS  Google Scholar 

  25. Iwahashi T, Yang R, Okabe N, Sakurai J, Lin J, Matsunaga D (2014) Nanoimprint-assisted fabrication of high haze metal mesh electrode for solar cells. Appl Phys Lett 105(22):223901. https://doi.org/10.1063/1.4903061

    Article  CAS  Google Scholar 

  26. Kiruthika S, Gupta R, Rao KDM, Chakraborty S, Padmavathy N, Kulkarni GU (2014) Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network. J Mater Chem C 2(11):2089–2094. https://doi.org/10.1039/C3TC32167C

    Article  CAS  Google Scholar 

  27. Kiruthika S, Rao KDM, Ankush K, Ritu G, Kulkarni GU (2014) Metal wire network based transparent conducting electrodes fabricated using interconnected crackled layer as template. Mater Res Express 1(2):026301

    Article  Google Scholar 

  28. Park JH, Lee DY, Kim Y-H, Kim JK, Lee JH, Park JH, Lee T-W, Cho JH (2014) Flexible and Transparent Metallic Grid Electrodes Prepared by Evaporative Assembly. ACS Appl Mater Interfaces 6(15):12380–12387. https://doi.org/10.1021/am502233y

    Article  CAS  Google Scholar 

  29. Zhou L, Xiang H-Y, Shen S, Li Y-Q, Chen J-D, Xie H-J, Goldthorpe IA, Chen L-S, Lee S-T, Tang J-X (2014) High-performance flexible organic light-emitting diodes using embedded silver network transparent electrodes. ACS Nano 8(12):12796–12805. https://doi.org/10.1021/nn506034g

    Article  CAS  Google Scholar 

  30. Choi H-J, Choo S, Jung P-H, Shin J-H, Kim Y-D, Lee H (2015) Uniformly embedded silver nanomesh as highly bendable transparent conducting electrode. Nanotechnology 26(5):055305

    Article  Google Scholar 

  31. Kang J, Jang Y, Kim Y, Cho S-H, Suhr J, Hong BH, Choi J-B, Byun D (2015) An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters. Nanoscale 7(15):6567–6573. https://doi.org/10.1039/C4NR06984F

    Article  CAS  Google Scholar 

  32. Hsu P-C, Wang S, Wu H, Narasimhan VK, Kong D, Ryoung Lee H, Cui Y (2013) Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires. Nat Commun 4. https://doi.org/10.1038/ncomms3522

  33. Ok JG, Kwak MK, Huard CM, Youn HS, Guo LJ (2013) Photo-roll lithography (PRL) for continuous and scalable patterning with application in flexible electronics. Adv Mater 25(45):6554–6561. https://doi.org/10.1002/adma.201303514

    Article  CAS  Google Scholar 

  34. An BW, Hyun BG, Kim S-Y, Kim M, Lee M-S, Lee K, Koo JB, Chu HY, Bae B-S, Park J-U (2014) Stretchable and transparent electrodes using hybrid structures of graphene-metal nanotrough networks with high performances and ultimate uniformity. Nano Lett 14(11):6322–6328. https://doi.org/10.1021/nl502755y

    Article  CAS  Google Scholar 

  35. Bao W, Wan J, Han X, Cai X, Zhu H, Kim D, Ma D, Xu Y, Munday JN, Drew HD, Fuhrer MS, Hu L (2014) Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat Commun 5. https://doi.org/10.1038/ncomms5224

  36. Gao T, Li Z, Huang P-S, Shenoy GJ, Parobek D, Tan S, Lee J-K, Liu H, Leu PW (2015) Hierarchical Graphene/Metal grid structures for stable. Flexible transparent conductors. ACS Nano 9(5):5440–5446. https://doi.org/10.1021/acsnano.5b01243

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshad Khan .

Appendix: Micro Embedded Metal-mesh Transparent Electrodes

Appendix: Micro Embedded Metal-mesh Transparent Electrodes

See Figs. 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17 and 3.18; Tables 3.1 and 3.2.

Fig. 3.10
figure 10

Optical transparency of blank COC film in UV and visible wavelength range

Fig. 3.11
figure 11

AFM images showing height profiles and sections of electroplated copper meshes (p = 50 µm) on FTO glass (substrate size: 2 cm × 2 cm), fabricated at constant deposition current of 5 mA. a Mesh thickness ~300 nm, electroplated for 1.5 min; b mesh thickness ~600 nm, electroplated for 3 min; c mesh thickness ~1 µm, electroplated for 6 min; d mesh thickness ~1.4 µm, electroplated for 9 min; e mesh thickness ~1.8 µm, electroplated for 15 min; f mesh thickness ~2 µm, electroplated for 18 min

Fig. 3.12
figure 12

The measured total transmission spectra of a typical micro-EMTE sample at different incident angles

Fig. 3.13
figure 13

SEM images showing cracks in the copper micro-EMTE after repeated tensile bending (1000 cycles) to radius of 3 mm

Fig. 3.14
figure 14

Variations in sheet resistance of copper micro-EMTE after the repeated adhesive tape tests

Fig. 3.15
figure 15

SEM-EDS analysis for a typical as-fabricated copper micro-EMTE sample at copper mesh (left) and COC film (right) before chemical stability tests a SEM micrographs b EDS spectrum of the corresponding boxed area in (a) c elemental quantification tables at the corresponding boxed area in (a) d elemental maps; copper (left) and carbon (right)

Fig. 3.16
figure 16

SEM-EDS analysis for a typical as-fabricated copper micro-EMTE sample at copper mesh (left) and COC film (right) after dipping in IPA for 24 h a SEM micrographs b EDS spectrum of the corresponding boxed area in (a) c elemental quantification tables at the corresponding boxed area in (a) d elemental maps; copper (left) and carbon (right)

Fig. 3.17
figure 17

SEM-EDS analysis for a typical as-fabricated copper micro-EMTE sample at copper mesh (left) and COC film (right) after exposing them to high humidity and high temperature conditions (60 °C, 85% relative humidity) for 24 h a SEM micrographs b EDS spectrum of the corresponding boxed area in (a) c elemental quantification tables at the corresponding boxed area in (a) d elemental maps; copper (left) and carbon (right)

Fig. 3.18
figure 18

SEM-EDS analysis for a typical as-fabricated copper micro-EMTE sample at copper mesh (left) and COC film (right) after dipping in DI water for 24 h a SEM micrographs b EDS spectrum of the corresponding boxed area in (a) c elemental quantification tables at the corresponding boxed area in (a) d elemental maps; copper (left) and carbon (right)

Table 3.1 Properties of the COC film
Table 3.2 Performance characterization of micro-EMTEs of various metals (p = 50 µm). For comparison the resistivity of each metal are listed. The difference in the sheet resistance of micro-EMTEs is due to the resistivity (material property) difference and metal thickness. For all the EMTEs, values of the sheet resistances are in accordance with the electrical resistivity values

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, A. (2020). Micro Embedded Metal-mesh Transparent Electrodes (Micro-EMTEs) Fabricated by LEIT Strategy. In: Novel Embedded Metal-mesh Transparent Electrodes. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-2918-4_3

Download citation

Publish with us

Policies and ethics