Skip to main content

Introduction to Vacuum-free Fabrication Strategies for Embedded Metal-mesh Transparent Electrodes

  • Chapter
  • First Online:
Novel Embedded Metal-mesh Transparent Electrodes

Part of the book series: Springer Theses ((Springer Theses))

  • 298 Accesses

Abstract

This chapter introduces EMTE structure and summarizes the key steps in its fabrication. These solution-based fabrication strategies comprises of three major stages i.e. mesh-template patterning on conductive substrate, metal deposition into the mesh-template, and metal-mesh transfer to flexible substrates. We accomplished each of the said steps by utilizing several vacuum-free approaches. For mesh pattering, the methods include photolithography (with and without a stepper), EBL, and NWL while for metal deposition, electrodeposition and electro-less deposition were employed. Similarly, inspired from the thermal NIL and UV-NIL on plastic COC films, imprint transfer methods i.e. thermal imprint transfer and UV-imprint transfer are developed and applied for transferring the metal-meshes onto plastic COC films in embedded form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu H, Kong D, Ruan Z, Hsu P-C, Wang S, Yu Z, Carney TJ, Hu L, Fan S, Cui Y (2013) A transparent electrode based on a metal nanotrough network. Nat Nano 8(6):421–425. https://doi.org/10.1038/nnano.2013.84http://www.nature.com/nnano/journal/v8/n6/abs/nnano.2013.84.html#supplementary-information

    Article  CAS  Google Scholar 

  2. Han B, Pei K, Huang Y, Zhang X, Rong Q, Lin Q, Guo Y, Sun T, Guo C, Carnahan D, Giersig M, Wang Y, Gao J, Ren Z, Kempa K (2014) Uniform self-forming metallic network as a high-performance transparent conductive electrode. Adv Mater 26(6):873–877. https://doi.org/10.1002/adma.201302950

    Article  CAS  Google Scholar 

  3. Kim H-J, Lee S-H, Lee J, Lee E-S, Choi J-H, Jung J-H, Jung J-Y, Choi*, D.-G. (2014) High-durable AgNi nanomesh film for a transparent conducting electrode. Small 10(18):3767–3774. https://doi.org/10.1002/smll.201400911

    Article  CAS  Google Scholar 

  4. Bao C, Yang J, Gao H, Li F, Yao Y, Yang B, Fu G, Zhou X, Yu T, Qin Y, Liu J, Zou Z (2015) In Situ fabrication of highly conductive metal nanowire networks with high transmittance from deep-ultraviolet to near-infrared. ACS Nano 9(3):2502–2509. https://doi.org/10.1021/nn504932e

    Article  CAS  Google Scholar 

  5. van Osch THJ, Perelaer J, de Laat AWM, Schubert US (2008) Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv Mat 20(2):343–345. https://doi.org/10.1002/adma.200701876

    Article  CAS  Google Scholar 

  6. Ahn BY, Duoss EB, Motala MJ, Guo X, Park S-I, Xiong Y, Yoon J, Nuzzo RG, Rogers JA, Lewis JA (2009) Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Sci 323(5921):1590–1593. https://doi.org/10.1126/science.1168375

    Article  CAS  Google Scholar 

  7. Khan A, Rahman K, Hyun M-T, Kim D-S, Choi K-H (2011) Multi-nozzle electrohydrodynamic inkjet printing of silver colloidal solution for the fabrication of electrically functional microstructures. Appl Phys A 104(4):1113–1113. https://doi.org/10.1007/s00339-011-6386-0

    Article  CAS  Google Scholar 

  8. Khan A, Rahman K, Kim DS, Choi KH (2012) Direct printing of copper conductive micro-tracks by multi-nozzle electrohydrodynamic inkjet printing process. J Mater Proc Technol 212(3):700–706. https://doi.org/10.1016/j.jmatprotec.2011.10.024

    Article  CAS  Google Scholar 

  9. Ellmer K (2012) Past achievements and future challenges in the development of optically transparent electrodes. Nat Photon 6(12):809–817

    Article  CAS  Google Scholar 

  10. Choi H-J, Choo S, Jung P-H, Shin J-H, Kim Y-D, Lee H (2015) Uniformly embedded silver nanomesh as highly bendable transparent conducting electrode. Nanotechnol 26(5):055305

    Article  Google Scholar 

  11. Hierlemann A, Brand O, Hagleitner C, Baltes H (2003) Microfabrication techniques for chemical/biosensors. Proceedings of the IEEE 91(6):839–863. https://doi.org/10.1109/JPROC.2003.813583

    Article  CAS  Google Scholar 

  12. Berger SD, Gibson JM, Camarda RM, Farrow RC, Huggins HA, Kraus JS, Liddle JA (1991) Projection electron-beam lithography: a new approach. J Vac Sci Technol B 9(6):2996–2999. https://doi.org/10.1116/1.585356

    Article  Google Scholar 

  13. Whang D, Jin S, Lieber CM (2003) Nanolithography using hierarchically assembled nanowire masks. Nano Lett 3(7):951–954. https://doi.org/10.1021/nl034268a

    Article  CAS  Google Scholar 

  14. Colli A, Fasoli A, Pisana S, Fu Y, Beecher P, Milne WI, Ferrari AC (2008) Nanowire lithography on silicon. Nano Lett 8(5):1358–1362. https://doi.org/10.1021/nl080033t

    Article  CAS  Google Scholar 

  15. Chou SY, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett 67(21):3114–3116. https://doi.org/10.1063/1.114851

    Article  CAS  Google Scholar 

  16. Moon Kyu K, Jong GO, Jae Yong L, Guo LJ (2012) Continuous phase-shift lithography with a roll-type mask and application to transparent conductor fabrication. Nanotechnology 23(34):344008

    Article  Google Scholar 

  17. Manfrinato VR, Zhang L, Su D, Duan H, Hobbs RG, Stach EA, Berggren KK (2013) Resolution limits of electron-beam lithography toward the atomic scale. Nano Lett 13(4):1555–1558. https://doi.org/10.1021/nl304715p

    Article  CAS  Google Scholar 

  18. Yu F, Li P, Shen H, Mathur S, Lehr C-M, Bakowsky U, Mücklich F (2005) Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface. Biomaterials 26(15):2307–2312. https://doi.org/10.1016/j.biomaterials.2004.07.021

    Article  CAS  Google Scholar 

  19. Garcia R, Knoll AW, Riedo E (2014) Advanced scanning probe lithography. Nat Nano 9(8):577–587. https://doi.org/10.1038/nnano.2014.157

    Article  CAS  Google Scholar 

  20. Schwarzacher W (2006) Electrodeposition: A technology for the future. Electrochem Soc Interface 1:4

    Google Scholar 

  21. Djokić SS, Cavallotti PL (2010) Electroless Deposition: Theory and Applications. In: Djokic SS (eds) In electrodeposition: theory and practice. Springer, New York, pp 251–289

    Google Scholar 

  22. Khan A, Li S, Tang X, Li W-D (2014) Nanostructure transfer using cyclic olefin copolymer templates fabricated by thermal nanoimprint lithography. J Vac Sci Technol B 32(6):06FI02. https://doi.org/10.1116/1.4900609

    Article  Google Scholar 

  23. McAlpine MC, Friedman RS, Lieber CM (2003) Nanoimprint lithography for hybrid plastic electronics. Nano Lett 3:443

    Article  CAS  Google Scholar 

  24. Li WD, Ding F, Hu J, Chou SY (2011) Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area. Opt Express 19:3925. https://doi.org/10.1364/OE.19.003925

    Article  Google Scholar 

  25. Guo LJ, Cheng X, Chou CF (2003) Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching. Nano Lett 4:69. https://doi.org/10.1021/nl034877i

    Article  CAS  Google Scholar 

  26. Cheyns D, Vasseur K, Rolin C, Genoe J, Poortmans J, Heremans P (2008) Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic heterojunction solar cells. Nanotechnol 19:424016

    Article  CAS  Google Scholar 

  27. Ahn SH, Guo LJ (2008) High-Speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv Mater 20:2044. https://doi.org/10.1002/adma.200702650

    Article  CAS  Google Scholar 

  28. Søndergaard R, Hösel M, Angmo D, Larsen-Olsen TT, Krebs FC (2012) Roll-to-roll fabrication of polymer solar cells. Mat Today 15(1):36–49. https://doi.org/10.1016/S1369-7021(12)70019-6

    Article  CAS  Google Scholar 

  29. Yu S, Han HJ, Kim JM, Yim S, Sim DM, Lim H, Lee JH, Park WI, Park JH, Kim KH, Jung YS (2017) Area-selective lift-off mechanism based on dual-triggered interfacial adhesion switching: highly facile fabrication of flexible nanomesh electrode. ACS Nano 11(4):3506–3516. https://doi.org/10.1021/acsnano.7b00229

    Article  CAS  Google Scholar 

  30. Fonrodona M, Escarré J, Villar F, Soler D, Asensi JM, Bertomeu J, Andreu J (2005) PEN as substrate for new solar cell technologies. Sol Energy Mater Sol Cells 89(1):37–47. https://doi.org/10.1016/j.solmat.2004.12.006

    Article  CAS  Google Scholar 

  31. Fateh R, Ismail AA, Dillert R, Bahnemann DW (2011) Highly active crystalline mesoporous TiO2 films coated onto polycarbonate substrates for self-cleaning applications. J Phys Chem C 115(21):10405–10411. https://doi.org/10.1021/jp200892z

    Article  CAS  Google Scholar 

  32. Gao X, Lin L, Liu Y, Huang X (2015) LTPS TFT process on polyimide substrate for flexible AMOLED. J Disp Technol 11(8):666–669. https://doi.org/10.1109/JDT.2015.2419656

    Article  CAS  Google Scholar 

  33. Ok K-H, Kim J, Park S-R, Kim Y, Lee C-J, Hong S-J, Kwak M-G, Kim N, Han CJ, Kim J-W (2015) Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes. 5:9464. https://doi.org/10.1038/srep09464, https://www.nature.com/articles/srep09464#supplementary-information

  34. Qin F, Tong J, Ge R, Luo B, Jiang F, Liu T, Jiang Y, Xu Z, Mao L, Meng W, Xiong S, Li Z, Li L, Zhou Y (2016) Indium tin oxide (ITO)-free, top-illuminated, flexible perovskite solar cells. J Mater Chem A 4(36):14017–14024. https://doi.org/10.1039/C6TA06657G

    Article  CAS  Google Scholar 

  35. Wang Y, Chen B, Evans KE, Ghita O (2016) Novel fibre-like crystals in thin films of Poly Ether Ether Ketone (PEEK). Mater Lett 184:112–118. https://doi.org/10.1016/j.matlet.2016.08.024

    Article  CAS  Google Scholar 

  36. Wittmann JC, Smith P (1991) Highly oriented thin films of poly(tetrafluoroethylene) as a substrate for oriented growth of materials. Nature 352(6334):414–417

    Article  CAS  Google Scholar 

  37. Zheng Q, Peng M, Yi X (1999) Crystallization of high density polyethylene: effect of contact with NdFeB magnetic powder substrates. Mat Lett 40(2):91–95. https://doi.org/10.1016/S0167-577X(99)00054-3

    Article  CAS  Google Scholar 

  38. Ahn SH, Guo LJ (2009) Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3:2304

    Article  CAS  Google Scholar 

  39. Seo SM, Kim TI, Lee HH (2007) Simple fabrication of nanostructure by continuous rigiflex imprinting. Microelectron Eng 84:567. https://doi.org/10.1016/j.mee.2006.11.008

    Article  CAS  Google Scholar 

  40. Schaper CD (2003) Patterned transfer of metallic thin film nanostructures by water-soluble polymer templates. Nano Lett 3:1305. https://doi.org/10.1021/nl034412s

    Article  CAS  Google Scholar 

  41. Hong SH, Hwang JY, Lee H, Lee HC, Choi KW (2009) UV nanoimprint using flexible polymer template and substrate. Microelectron Eng 86:295

    Article  CAS  Google Scholar 

  42. Lee H, Hong S, Yang K, Choi K (2006) Fabrication of 100nm metal lines on flexible plastic substrate using ultraviolet curing nanoimprint lithography. Appl Phys Lett 88:143112. https://doi.org/10.1063/1.2193653

    Article  CAS  Google Scholar 

  43. Okagbare PI, Emory JM, Datta P, Goettert J, Soper SA (2010) Fabrication of a cyclic olefin copolymer planar waveguide embedded in a multi-channel poly (methyl methacrylate) fluidic chip for evanescence excitation. Lab Chip 10:66

    Article  CAS  Google Scholar 

  44. Nunes PS, Ohlsson PD, Ordeig O, Kutter JP (2010) Cyclic olefin polymers: emerging materials for lab-on-a-chip applications. Microfluid Nanofluidics 9:145

    Article  CAS  Google Scholar 

  45. Bundgaard F, Perozziello G, Geschke O (2006) Rapid prototyping tools and methods for all-Topas® cyclic olefin copolymer fluidic microsystems. P I Mech Eng C-J Mech 220:1625

    Article  Google Scholar 

  46. Steigert J, Haeberle S, Brenner T, Müller C, Steinert C, Koltay P, Gottschlich N, Reinecke H, Rühe J, Zengerle R (2007) Rapid prototyping of microfluidic chips in COC. J Micromech Microeng 17:333

    Article  CAS  Google Scholar 

  47. Leech P (2009) Hot embossing of cyclic olefin copolymers. J Micromech Microeng 19:055008

    Article  Google Scholar 

  48. Kalima V, Pietarinen J, Siitonen S, Immonen J, Suvanto M, Kuittinen M, Mönkkönen K, Pakkanen T (2007) Transparent thermoplastics: Replication of diffractive optical elements using micro-injection molding. Opt Mater 30:285

    Article  CAS  Google Scholar 

  49. Malic L, Cui B, Tabrizian M, Veres T (2009) Nanoimprinted plastic substrates for enhanced surface plasmon resonance imaging detection. Opt Express 17:20386

    Article  CAS  Google Scholar 

  50. Vannahme C, Klinkhammer S, Christiansen MB, Kolew A, Kristensen A, Lemmer U, Mappes T (2010) All-polymer organic semiconductor laser chips: parallel fabrication and encapsulation. Opt Express 18:24881

    Article  CAS  Google Scholar 

  51. Matschuk M, Larsen NB (2013) Injection molding of high aspect ratio sub-100 nm nanostructures. J Micromech Microeng 23:025003

    Article  Google Scholar 

  52. Pakkanen TT, Hietala J, Pääkkönen EJ, Pääkkönen P, Jääskeläinen T, Kaikuranta T (2002) Replication of sub-micron features using amorphous thermoplastics. Polym Eng Sci 42:1600

    Article  Google Scholar 

  53. Gadegaard N, Mosler S, Larsen NB (2003) Biomimetic polymer nanostructures by injection molding. Macromol Mater Eng 288:76

    Article  CAS  Google Scholar 

  54. Shaw MT, MacKnight WJ (2005) Introduction to polymer viscoelasticity. John Wiley & Sons, New Jersey

    Google Scholar 

  55. Jena R, Chen X, Yue C, Lam Y (2011) Rheological (visco-elastic behaviour) analysis of cyclic olefin copolymers with application to hot embossing for microfabrication. J Micromech Microeng 21:085029

    Article  Google Scholar 

  56. Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interf Sci 53:314. https://doi.org/10.1016/0021-9797(75)90018-1

    Article  CAS  Google Scholar 

  57. Woo YS, Kim JK, Lee DE, Suh KY, Lee WI (2007) Density variation of nanoscale patterns in thermal nanoimprint lithography. Appl Phys Lett 91:253111. https://doi.org/10.1063/1.2827187

    Article  CAS  Google Scholar 

  58. Kostovski G, Stoddart PR, Mitchell A (2014) The optical fiber tip: an inherently light-coupled microscopic platform for micro-and nanotechnologies. Adv Mater 26:3798

    Article  CAS  Google Scholar 

  59. Shen Y, Yao L, Li Z, Kou J, Cui Y, Bian J, Yuan C, Ge H, Li WD, Wu W, Chen Y (2013) Double transfer UV-curing nanoimprint lithography. Nanotechnology 24:465304

    Article  Google Scholar 

  60. Scheerlinck S, Dubruel P, Bienstman P, Schacht E, Van Thourhout D, Baets R (2009) Metal grating patterning on fiber facets by UV-based nano imprint and transfer lithography using optical alignment. J Lightwave Technol 27:1415

    Article  CAS  Google Scholar 

  61. Yang X, Ileri N, Larson CC, Carlson TC, Britten JA, Chang ASP, Gu C, Bond TC (2012) Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering. Opt Express 20:24819. https://doi.org/10.1364/OE.20.024819

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshad Khan .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, A. (2020). Introduction to Vacuum-free Fabrication Strategies for Embedded Metal-mesh Transparent Electrodes. In: Novel Embedded Metal-mesh Transparent Electrodes. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-2918-4_2

Download citation

Publish with us

Policies and ethics