Skip to main content

The Role of Gut Microbiota in the Antidepressant Effects of Ketamine

  • Chapter
  • First Online:
Ketamine

Abstract

In recent years, the prevalence, mental disability, and suicide rates of depression have been increasing without a corresponding significant change in cure rate, making depression the second largest disease burden worldwide. There is an urgent need to find more effective drugs and other therapeutic strategies. Accumulating evidence has revealed that ketamine elicits a fast-acting and sustained antidepressant effect, but the potential mechanisms underlying its antidepressant effects are not yet fully clear. Previous studies have indicated that ketamine’s mechanism of action involves the inhibition of presynaptic and postsynaptic N-methyl-d-aspartate receptors (NMDARs) in GABAergic interneurons and the activation of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and the brain-derived neurotrophic factor-tyrosine kinase receptor B (BDNF-TrkB) signaling pathway. Additionally, there is growing evidence that the gut microbiota may play a crucial role in the antidepressant effects of ketamine. In this chapter, we will discuss recent findings regarding the correlation between gut microbiota and the antidepressant effects of ketamine and their potential mechanisms of action. Further understanding of these pathways will likely lead to the development of novel and more effective treatments for depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abildgaard A, Elfving B, Hokland M et al (2017a) Probiotic treatment protects against the pro-depressant-like effect of high-fat diet in Flinders Sensitive Line rats. Brain Behav Immun 65:33–42

    Article  CAS  PubMed  Google Scholar 

  • Abildgaard A, Elfving B, Hokland M et al (2017b) Probiotic treatment reduces depressive-like behaviour in rats independently of diet. Psychoneuroendocrinology 79:40–48

    Article  CAS  PubMed  Google Scholar 

  • Ago Y, Tanabe W, Higuchi M et al (2019) (R)-ketamine induces a greater increase in prefrontal 5-HT release than (S)-ketamine and ketamine metabolites via an AMPA receptor-independent mechanism. Int J Neuropsychopharmacol 22(10):665–674. https://doi.org/10.1093/ijnp/pyz041

    Article  PubMed  PubMed Central  Google Scholar 

  • Ait-Belgnaoui A, Durand H, Cartier C et al (2012) Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37(11):1885–1895

    Article  CAS  PubMed  Google Scholar 

  • Akkasheh G, Kashani-Poor Z, Tajabadi-Ebrahimi M et al (2016) Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition 32(3):315–320

    Article  CAS  PubMed  Google Scholar 

  • Barden N (2004) Implication of the hypothalamic-pituitary-adrenal axis in the physiopathology of depression. J Psychiatry Neurosci 29(3):185–193

    PubMed  PubMed Central  Google Scholar 

  • Bartoli F, Riboldi I, Crocamo C et al (2017) Ketamine as a rapid-acting agent for suicidal ideation: a meta-analysis. Neurosci Biobehav Rev 77:232–236

    Article  CAS  PubMed  Google Scholar 

  • Berman RM, Cappiello A, Anand A et al (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47(4):351–354

    Article  CAS  PubMed  Google Scholar 

  • Borre YE, Moloney RD, Clarke G et al (2014) The impact of microbiota on brain and behavior: mechanisms and therapeutic potential. Adv Exp Med Biol 817:373–403

    Article  CAS  PubMed  Google Scholar 

  • Bortolozzi A, Celada P, Artigas F (2014) Novel therapeutic strategies in major depression: focus on RNAi and ketamine. Curr Pharm Des 20(23):3848–3860

    Article  CAS  PubMed  Google Scholar 

  • Bravo JA, Forsythe P, Chew MV et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108(38):16050–16055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carabotti M, Scirocco A, Maselli MA et al (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28(2):203–209

    PubMed  PubMed Central  Google Scholar 

  • Chou D, Peng HY, Lin TB et al (2018) (2R,6R)-hydroxynorketamine rescues chronic stress-induced depression-like behavior through its actions in the midbrain periaqueductal gray. Neuropharmacology 139:1–12

    Article  CAS  PubMed  Google Scholar 

  • Clark-Raymond A, Halaris A (2013) VEGF and depression: a comprehensive assessment of clinical data. J Psychiatr Res 47(8):1080–1087

    Article  PubMed  Google Scholar 

  • Desbonnet L, Garrett L, Clarke G et al (2008) The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 43(2):164–174

    Article  PubMed  Google Scholar 

  • Deyama S, Bang E, Wohleb ES et al (2019) Role of neuronal VEGF signaling in the prefrontal cortex in the rapid antidepressant effects of ketamine. Am J Psychiatry 176(5):388–400

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinan TG, Cryan JF (2019) Gut microbes and depression: still waiting for godot. Brain Behav Immun 79:1–2

    Article  PubMed  Google Scholar 

  • Fukumoto K, Toki H, Iijima M et al (2017) Antidepressant potential of (R)-ketamine in rodent models: comparison with (S)-ketamine. J Pharmacol Exp Ther 361(1):9–16

    Article  CAS  PubMed  Google Scholar 

  • Getachew B, Aubee JI, Schottenfeld RS et al (2018) Ketamine interactions with gut-microbiota in rats: relevance to its antidepressant and anti-inflammatory properties. BMC Microbiol 18(1):222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goitsuka R, Hirota Y, Hasegawa A et al (1987) Release of interleukin 1 from peritoneal exudate cells of cats with feline infectious peritonitis. Nihon Juigaku Zasshi 49(5):811–818

    Article  CAS  PubMed  Google Scholar 

  • Grunebaum MF, Galfalvy HC, Choo TH et al (2018) Ketamine for rapid reduction of suicidal thoughts in major depression: a midazolam-controlled randomized clinical trial. Am J Psychiatry 175(4):327–335

    Article  PubMed  Google Scholar 

  • Hashimoto K (2019) Rapid-acting antidepressant ketamine, its metabolites and other candidates: a historical overview and future perspective. Psychiatry Clin Neurosci 73(10):613–627. https://doi.org/10.1111/pcn.12902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoban AE, Moloney RD, Golubeva AV et al (2016) Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat. Neuroscience 339:463–477

    Article  CAS  PubMed  Google Scholar 

  • Hold GL, Hansen R (2019) impact of the gastrointestinal microbiome in health and disease: co-evolution with the host immune system. Curr Top Microbiol Immunol 421:303–318

    CAS  PubMed  Google Scholar 

  • Huang N, Hua D, Zhan G et al (2019) Role of actinobacteria and coriobacteriia in the antidepressant effects of ketamine in an inflammation model of depression. Pharmacol Biochem Behav 176:93–100

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Ling Z, Zhang Y et al (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:186–194

    Article  PubMed  Google Scholar 

  • Jin Y, Sun LH, Yang W et al (2019) The role of BDNF in the neuroimmune axis regulation of mood disorders. Front Neurol 10:515

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim KA, Gu W, Lee IA et al (2012) High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One 7(10):e47713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavelle A, Hill C (2019) Gut microbiome in health and disease: emerging diagnostic opportunities. Gastroenterol Clin North Am 48(2):221–235

    Article  PubMed  Google Scholar 

  • Lee EE, Della Selva MP, Liu A et al (2015a) Ketamine as a novel treatment for major depressive disorder and bipolar depression: a systematic review and quantitative meta-analysis. Gen Hosp Psychiatry 37(2):178–184

    Article  PubMed  Google Scholar 

  • Lee SP, Sung IK, Kim JH et al (2015b) The effect of emotional stress and depression on the prevalence of digestive diseases. J Neurogastroenterol Motil 21(2):273–282

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang S, Wang T, Hu X et al (2015) Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310:561–577

    Article  CAS  PubMed  Google Scholar 

  • Liu RT, Walsh RFL, Sheehan AE (2019) Prebiotics and probiotics for depression and anxiety: a systematic review and meta-analysis of controlled clinical trials. Neurosci Biobehav Rev 102:13–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyte M (2013) Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog 9(11):e1003726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lyte M (2014) Microbial endocrinology and the microbiota-gut-brain axis. Adv Exp Med Biol 817:3–24

    Article  CAS  PubMed  Google Scholar 

  • Malhi GS, Mann JJ (2018) Depression. Lancet 392(10161):2299–2312

    Article  PubMed  Google Scholar 

  • Maqsood R, Stone TW (2016) The gut-brain axis, BDNF, NMDA and CNS disorders. Neurochem Res 41(11):2819–2835

    Article  CAS  PubMed  Google Scholar 

  • Mastrodonato A, Martinez R, Pavlova IP et al (2018) Ventral CA3 activation mediates prophylactic ketamine efficacy against stress-induced depressive-like behavior. Biol Psychiatry 84(11):846–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer EA, Padua D, Tillisch K (2014) Altered brain-gut axis in autism: comorbidity or causative mechanisms? Bioessays 36(10):933–939

    Article  PubMed  Google Scholar 

  • McGirr A, Berlim MT, Bond DJ et al (2015) A systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials of ketamine in the rapid treatment of major depressive episodes. Psychol Med 45(4):693–704

    Article  CAS  PubMed  Google Scholar 

  • McLean PG, Borman RA, Lee K (2007) 5-HT in the enteric nervous system: gut function and neuropharmacology. Trends Neurosci 30(1):9–13

    Article  CAS  PubMed  Google Scholar 

  • Messaoudi M, Lalonde R, Violle N et al (2011) Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105(5):755–764

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi AA, Jazayeri S, Khosravi-Darani K et al (2016) The effects of probiotics on mental health and hypothalamic-pituitary-adrenal axis: a randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutr Neurosci 19(9):387–395

    Article  CAS  PubMed  Google Scholar 

  • Murrough JW, Iosifescu DV, Chang LC et al (2013) Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry 170(10):1134–1142

    Article  PubMed  PubMed Central  Google Scholar 

  • Murrough JW, Soleimani L, DeWilde KE et al (2015) Ketamine for rapid reduction of suicidal ideation: a randomized controlled trial. Psychol Med 45(16):3571–3580

    Article  CAS  PubMed  Google Scholar 

  • Pennisi E (2019) Gut bacteria linked to mental well-being and depression. Science 363(6427):569

    Article  CAS  PubMed  Google Scholar 

  • Peyrovian B, Rosenblat JD, Pan Z et al (2019) The glycine site of NMDA receptors: A target for cognitive enhancement in psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 92:387–404

    Article  CAS  PubMed  Google Scholar 

  • Price RB, Nock MK, Charney DS et al (2009) Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry 66(5):522–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu Y, Yang C, Ren Q et al (2017) Comparison of (R)-ketamine and lanicemine on depression-like phenotype and abnormal composition of gut microbiota in a social defeat stress model. Sci Rep 7(1):15725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reardon S (2019) Antidepressant based on party drug gets backing from FDA advisory group. https://www.nature.com/articles/d41586-019-00559-2. Accessed 13 Feb 2019

  • Shi H, Kokoeva MV, Inouye K et al (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116(11):3015–3025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skolnick P, Layer RT, Popik P et al (1996) Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression. Pharmacopsychiatry 29(1):23–26

    Article  CAS  PubMed  Google Scholar 

  • Smith K (2014) Mental health: a world of depression. Nature 515(7526):181

    Article  PubMed  CAS  Google Scholar 

  • Stower H (2019) Depression linked to the microbiome. Nat Med 25(3):358

    PubMed  Google Scholar 

  • Sudo N, Chida Y, Aiba Y et al (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558(Pt 1):263–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun HL, Zhou ZQ, Zhang GF et al (2016) Role of hippocampal p11 in the sustained antidepressant effect of ketamine in the chronic unpredictable mild stress model. Transl Psychiatry 6:e741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tannock GW, Savage DC (1974) Influences of dietary and environmental stress on microbial populations in the murine gastrointestinal tract. Infect Immun 9(3):591–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi MH, Rush AJ, Wisniewski SR et al (2006) Evaluation of outcomes with citalopram for depression using measurement-based care in STAR∗D: implications for clinical practice. Am J Psychiatry 163(1):28–40

    Article  PubMed  Google Scholar 

  • U.S. Food and Drug Administration (2019) FDA approves new nasal spray medication for treatment-resistant depression; available only at a certified doctor’s office or clinic. https://www.fda.gov/news-events/press-announcements/fda-approves-new-nasal-spray-medication-treatment-resistant-depression-available-only-certified. Accessed 6 Mar 2019

  • Vlainic JV, Suran J, Vlainic T et al (2016) Probiotics as an adjuvant therapy in major depressive disorder. Curr Neuropharmacol 14(8):952–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warden D, Rush AJ, Trivedi MH et al (2007) The STAR∗D Project results: a comprehensive review of findings. Curr Psychiatry Rep 9(6):449–459

    Article  PubMed  Google Scholar 

  • Weilburg JB (2004) An overview of SSRI and SNRI therapies for depression. Manag Care 13(6 Suppl Depression):25–33

    PubMed  Google Scholar 

  • Williams NR, Heifets BD, Blasey C et al (2018) Attenuation of antidepressant effects of ketamine by opioid receptor antagonism. Am J Psychiatry 175(12):1205–1215

    Article  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2017) Depression: let’s talk. https://www.who.int/mental_health/management/depression/en/. Accessed 7 Apr 2017

  • Wren AM, Bloom SR (2007) Gut hormones and appetite control. Gastroenterology 132(6):2116–2130

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Hackett M, Carter G et al (2016) Effects of low-dose and very low-dose ketamine among patients with major depression: a systematic review and meta-analysis. Int J Neuropsychopharmacol 19(4):pyv124

    Article  PubMed  Google Scholar 

  • Yang J, Yu J (2018) The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get. Protein Cell 9(5):474–487

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang C, Shirayama Y, Zhang JC et al (2015) R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry e632:5

    Google Scholar 

  • Yang C, Fujita Y, Ren Q et al (2017a) Bifidobacterium in the gut microbiota confer resilience to chronic social defeat stress in mice. Sci Rep 7:45942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Qu Y, Fujita Y et al (2017b) Possible role of the gut microbiota-brain axis in the antidepressant effects of (R)-ketamine in a social defeat stress model. Transl Psychiatry 7(12):1294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang C, Kobayashi S, Nakao K et al (2018a) AMPA receptor activation-independent antidepressant actions of ketamine metabolite (S)-norketamine. Biol Psychiatry 84(8):591–600

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Ren Q, Qu Y et al (2018b) Mechanistic target of rapamycin-independent antidepressant effects of (R)-ketamine in a social defeat stress model. Biol Psychiatry 83(1):18–28

    Article  CAS  PubMed  Google Scholar 

  • Zarate CA Jr, Singh JB, Carlson PJ et al (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63(8):856–864

    Article  CAS  PubMed  Google Scholar 

  • Zarate CA Jr, Brutsche NE, Ibrahim L et al (2012) Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry 71(11):939–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Hashimoto K (2019) Lack of opioid system in the antidepressant actions of ketamine. Biol Psychiatry 85(6):e25–e27

    Article  CAS  PubMed  Google Scholar 

  • Zhang JC, Li SX, Hashimoto K (2014) R (-)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine. Pharmacol Biochem Behav 116:137–141

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Xu T, Yuan Z et al (2016) Essential roles of AMPA receptor GluA1 phosphorylation and presynaptic HCN channels in fast-acting antidepressant responses of ketamine. Sci Signal 9(458):ra123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang JC, Yao W, Dong C et al (2017) Blockade of interleukin-6 receptor in the periphery promotes rapid and sustained antidepressant actions: a possible role of gut-microbiota-brain axis. Transl Psychiatry 7(5):e1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng P, Zeng B, Zhou C et al (2016) Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 21(6):786–796

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y., Xu, X., Luo, A., Yang, C. (2020). The Role of Gut Microbiota in the Antidepressant Effects of Ketamine. In: Hashimoto, K., Ide, S., Ikeda, K. (eds) Ketamine. Springer, Singapore. https://doi.org/10.1007/978-981-15-2902-3_8

Download citation

Publish with us

Policies and ethics