Skip to main content

Behavioral Pharmacology of Ketamine: An Overview of Preclinical Studies

  • Chapter
  • First Online:
Ketamine
  • 851 Accesses

Abstract

The behavioral pharmacological effects of ketamine in animals have been reviewed. Ketamine does not cause remarkable behavioral changes at doses effective for the treatment of depressive behavior in animal models. However, a transient increase in spontaneous motor activity has been reported sometimes. Ketamine is effective for the recovery of behavior caused by chronic mild stress, social defeat stress, and so on. Several mechanisms underlying this effect have been proposed, but a conclusive answer has still not been presented. (R)-Ketamine is more potent and has longer-lasting antidepressant effects than the (S)-isomer. Ketamine produces diverse behavioral changes other than antidepressant effects, such as blunting fear, cognitive impairments, and social withdrawal. Behavioral changes related to schizophrenia-like symptoms such as impairment of prepulse inhibition of the acoustic startle response and impairment of latent inhibition have been reported. However, relatively high doses seem to be necessary to yield these effects. Several lines of preclinical evidence have also shown the reinforcing and rewarding properties of ketamine, which are relevant to the abuse liability. To overcome these side effects and to optimize its clinical efficacy as a rapid-onset antidepressant for treatment-resistant patients, detailed preclinical studies targeting proper dosing regimen for clinical applications will be important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

im:

Intramuscular

ip:

Intraperitoneal

iv:

Intravenous

sc:

Subcutaneous

References

  • Autry AE, Adachi M, Nosyreva E et al (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker A, Grecksch G (2004) Ketamine-induced changes in rat behaviour: a possible animal model of schizophrenia. Test of predictive validity. Prog Neuropsychopharmacol Biol Psychiatry 28:1267–1277

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Peters B, Schroeder H et al (2003) Ketamine-induced changes in rat behaviour: a possible animal model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 27:687–700

    Article  CAS  PubMed  Google Scholar 

  • Berman RM, Cappiello A, Anand A et al (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  CAS  PubMed  Google Scholar 

  • Caffino L, Piva A, Mottarlini F et al (2018) Ketamine self-administration elevates αCaMKII autophosphorylation in mood and reward-related brain regions in rats. Mol Neurobiol 55:5453–5461

    Article  CAS  PubMed  Google Scholar 

  • Castaneda AE, Tuulio-Henriksson A, Marttunen M et al (2008) A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults. J Affect Disord 106:1–27

    Article  PubMed  Google Scholar 

  • Cottone P, Iemolo A, Narayan AR et al (2013) The uncompetitive NMDA receptor antagonists ketamine and memantine preferentially increase the choice for a small, immediate reward in low-impulsive rats. Psychopharmacology (Berl) 226:127–138

    Article  CAS  Google Scholar 

  • De Luca MT, Badiani A (2011) Ketamine self-administration in the rat: evidence for a critical role of setting. Psychopharmacology (Berl) 214:549–556

    Article  CAS  Google Scholar 

  • Donegan JJ, Lodge DJ (2017) Hippocampal perineuronal nets are required for the sustained antidepressant effect of ketamine. Int J Neuropsychopharmacol 20:354–358

    CAS  PubMed  Google Scholar 

  • Duan TT, Tan JW, Yuan Q et al (2013) Acute ketamine induces hippocampal synaptic depression and spatial memory impairment through dopamine D1/D5 receptors. Psychopharmacology (Berl) 228:451–461

    Article  CAS  Google Scholar 

  • Featherstone RE, M Tatard-Leitman V, Suh JD et al (2013) Electrophysiological and behavioral responses to ketamine in mice with reduced Akt1 expression. Psychopharmacology (Berl) 227:639–649

    Article  CAS  Google Scholar 

  • Fitzgerald PJ, Yen JY, Watson BO (2019) Stress-sensitive antidepressant-like effects of ketamine in the mouse forced swim test. PLoS One 14:e0215554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukumoto K, Toki H, Iijima M et al (2017) Antidepressant potential of (R)-ketamine in rodent models: comparison with (S)-ketamine. J Pharmacol Exp Ther 361:9–16

    Article  CAS  PubMed  Google Scholar 

  • Getachew B, Aubee JI, Schottenfeld RS et al (2018) Ketamine interactions with gut-microbiota in rats: relevance to its antidepressant and anti-inflammatory properties. BMC Microbiol 18:222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grady SE, Marsh TA, Tenhouse A et al (2018) Ketamine for the treatment of major depressive disorder and bipolar depression: a review of the literature. Ment Health Clin 7:16–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayase T, Yamamoto Y, Yamamoto K (2006) Behavioral effects of ketamine and toxic interactions with psychostimulants. BMC Neurosci 7:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hillhouse TM, Porter JH, Negus SS (2014) Dissociable effects of the noncompetitive NMDA receptor antagonists ketamine and MK-801 on intracranial self-stimulation in rats. Psychopharmacology (Berl) 231:2705–2716

    Article  CAS  Google Scholar 

  • Honsberger MJ, Taylor JR, Corlett PR (2015) Memories reactivated under ketamine are subsequently stronger: a potential pre-clinical behavioral model of psychosis. Schizophr Res 164:227–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Joules R, Doyle OM, Schwarz AJ et al (2015) Ketamine induces a robust whole-brain connectivity pattern that can be differentially modulated by drugs of different mechanism and clinical profile. Psychopharmacology (Berl) 232:4205–4218

    Article  CAS  Google Scholar 

  • Ju LS, Yang JJ, Lei L et al (2017) The combination of long-term ketamine and extinction training contributes to fear erasure by BDNF methylation. Front Cell Neurosci 11:100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juven-Wetzler A, Cohen H, Kaplan Z et al (2014) Immediate ketamine treatment does not prevent posttraumatic stress responses in an animal model for PTSD. Eur Neuropsychopharmacol 24:469–479

    Article  CAS  PubMed  Google Scholar 

  • Koek W, Woods JH, Ornstein P (1987) A simple and rapid method for assessing similarities among directly observable behavioral effects of drugs: PCP-like effects of 2-amino-5-phosphonovalerate in rats. Psychopharmacology (Berl) 91:297–304

    Article  CAS  Google Scholar 

  • Kunugi H, Tanaka M, Hori H et al (2007) Prepulse inhibition of acoustic startle in Japanese patients with chronic schizophrenia. Neurosci Res 59:23–28

    Article  PubMed  Google Scholar 

  • Lapiz MN, Morilak DA (2006) Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability. Neuroscience 137:1039–1049

    Article  CAS  PubMed  Google Scholar 

  • Leander JD (1989) Tricyclic antidepressants block N-methyl-D-aspartic acid-induced lethality in mice. Br J Pharmacol 96:256–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Liu RJ, Dwyer JM et al (2011) Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69:754–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JC, Chan MH, Lee MY et al (2016) N,N-dimethylglycine differentially modulates psychotomimetic and antidepressant-like effects of ketamine in mice. Prog Neuropsychopharmacol Biol Psychiatry 71:7–13

    Article  CAS  PubMed  Google Scholar 

  • Meliska CJ, Greenberg AJ, Trevor AJ (1980) The effects of ketamine enantiomers on schedule-controlled behavior in the rat. J Pharmacol Exp Ther 212:198–202

    CAS  PubMed  Google Scholar 

  • Miller OH, Yang L, Wang CC et al (2014) GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine. Elife 3:e03581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moghaddam B, Adams B, Verma A et al (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura M, Sato K, Okada T et al (1998) Ketamine inhibits monoamine transporters expressed in human embryonic kidney 293 cells. Anesthesiology 88:768–774

    Article  CAS  PubMed  Google Scholar 

  • Orser BA, Pennefather PS, MacDonald JF (1997) Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors. Anesthesiology 86:903–917

    Article  CAS  PubMed  Google Scholar 

  • Patton MS, Lodge DJ, Morilak DA et al (2017) Ketamine corrects stress-induced cognitive dysfunction through JAK2/STAT3 signaling in the orbitofrontal cortex. Neuropsychopharmacology 42:1220–1230

    Article  CAS  PubMed  Google Scholar 

  • Pietersen CY, Bosker FJ, Doorduin J et al (2007) An animal model of emotional blunting in schizophrenia. PLoS One 2:e1360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Razoux F, Garcia R, Léna I (2007) Ketamine, at a dose that disrupts motor behavior and latent inhibition, enhances prefrontal cortex synaptic efficacy and glutamate release in the nucleus accumbens. Neuropsychopharmacology 32:719–727

    Article  CAS  PubMed  Google Scholar 

  • Reynolds IJ, Miller RJ (1988) Tricyclic antidepressants block N-methyl-D-aspartate receptors: similarities to the action of zinc. Br J Pharmacol 95:95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanacora G, Treccani G, Popoli M (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62:63–77

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Kabbaj M (2016) Sex differences in effects of ketamine on behavior, spine density, and synaptic proteins in socially isolated rats. Biol Psychiatry 80:448–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoet G, Snyder LH (2006) Effects of the NMDA antagonist ketamine on task-switching performance: evidence for specific impairments of executive control. Neuropsychopharmacology 31:1675–1681

    Article  CAS  PubMed  Google Scholar 

  • Strong CE, Schoepfer KJ, Dossat AM et al (2017) Locomotor sensitization to intermittent ketamine administration is associated with nucleus accumbens plasticity in male and female rats. Neuropharmacology 121:195–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Aoki T, Kato H et al (1999) Effects of the 5-HT(3) receptor antagonist ondansetron on the ketamine- and dizocilpine-induced place preferences in mice. Eur J Pharmacol 385:99–102

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Kato H, Aoki T et al (2000) Effects of the non-competitive NMDA receptor antagonist ketamine on morphine-induced place preference in mice. Life Sci 67:383–389

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Braff DL, Hartston H et al (1996) Latent inhibition in schizophrenia. Schizophr Res 20:91–103

    Article  CAS  PubMed  Google Scholar 

  • Uribe E, Landaeta J, Wix R et al (2013) Memantine reverses social withdrawal induced by ketamine in rats. Exp Neurobiol 22:18–22

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Kam EL, de Vry J, Tzschentke TM (2007) Effect of 2-methyl-6-(phenylethynyl) pyridine on intravenous self-administration of ketamine and heroin in the rat. Behav Pharmacol 18:717–724

    Article  PubMed  CAS  Google Scholar 

  • Venniro M, Mutti A, Chiamulera C (2015) Pharmacological and non-pharmacological factors that regulate the acquisition of ketamine self-administration in rats. Psychopharmacology (Berl) 232:4505–4514

    Article  CAS  Google Scholar 

  • Walker AK, Budac DP, Bisulco S et al (2013) NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Neuropsychopharmacology 38:1609–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace DL, Han MH, Graham DL et al (2009) CREB regulation of nucleus accumbens excitability mediates social isolation-induced behavioral deficits. Nat Neurosci 12:200–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Yu HY, Shen XF et al (2015) The rapid antidepressant effect of ketamine in rats is associated with down-regulation of pro-inflammatory cytokines in the hippocampus. Ups J Med Sci 120:241–248

    Article  PubMed  PubMed Central  Google Scholar 

  • Wenger GR, Dews PB (1976) The effects of phencyclidine, ketamine, delta-amphetamine and pentobarbital on schedule-controlled behavior in the mouse. J Pharmacol Exp Ther 196:616–624

    CAS  PubMed  Google Scholar 

  • WHO Expert Committee on Drug Dependence (2003) Pre-review of psychoactive substances ketamine. WHO technical report series, vol 915, p 15

    Google Scholar 

  • Winger G, Palmer RK, Woods JH (1989) Drug-reinforced responding: rapid determination of dose-response functions. Drug Alcohol Depend 24:135–142

    Article  CAS  PubMed  Google Scholar 

  • Winger G, Hursh SR, Casey KL et al (2002) Relative reinforcing strength of three N-methyl-D-aspartate antagonists with different onsets of action. J Pharmacol Exp Ther 301:690–697

    Article  CAS  PubMed  Google Scholar 

  • Wright KN, Strong CE, Addonizio MN et al (2017) Reinforcing properties of an intermittent, low dose of ketamine in rats: effects of sex and cycle. Psychopharmacology (Berl) 234:393–401

    Article  CAS  Google Scholar 

  • Yang C, Shirayama Y, Zhang JC et al (2015) R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry 5:e632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Qu Y, Fujita Y et al (2017) Possible role of the gut microbiota-brain axis in the antidepressant effects of (R)-ketamine in a social defeat stress model. Transl Psychiatry 7:1294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zanos P, Gould TD (2018) Mechanisms of ketamine action as an antidepressant. Mol Psychiatry 23:801–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Dong C, Fujita Y et al (2018) 5-Hydroxytryptamine-independent antidepressant actions of (R)-ketamine in a chronic social defeat stress model. Int J Neuropsychopharmacol 21:157–163

    Article  CAS  PubMed  Google Scholar 

  • Zhu CB, Lindler KM, Owens AW et al (2010) Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters. Neuropsychopharmacology 35:2510–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The author would like to thank Ms. Kikuyo Nakaoka, Department of Pharmacology, Kumamoto Laboratory, LSI Medience Corp., for conducting the functional observational battery experiment.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hironaka, N. (2020). Behavioral Pharmacology of Ketamine: An Overview of Preclinical Studies. In: Hashimoto, K., Ide, S., Ikeda, K. (eds) Ketamine. Springer, Singapore. https://doi.org/10.1007/978-981-15-2902-3_6

Download citation

Publish with us

Policies and ethics