Skip to main content

Synaptic Modulation in the Effect of Ketamine

  • Chapter
  • First Online:
Ketamine

Abstract

Our central nervous system constantly instructs movements, generates recognition, and calculates value and emotion. Constant adaptation to the environment may be achieved by the integration of emotion/reward and recognition. Some diseases of mind may come from failure in making integration adaptive to environment. Neuronal circuits are established by the experience-dependent synaptic plasticity of glutamatergic neurons. Many of such main routes are equipped with the recurrent inhibition by GABAergic interneurons and regulated by monoaminergic modulation representing the reward and emotion. Major depression disease is considered as a state of dysfunction of these circuits which is here referred to as maladaptation. Studies of antidepressant mechanisms of ketamine include how stress induces changes in the original circuit, and how ketamine achieves the recovery of its function. In this chapter both lines of studies are discussed from the view points of the excitatory synapse hypothesis of major depression, and mechanisms of transient and persistent synaptic plasticity including reconsolidation and extinction learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akgül G, McBain CJ (2016) Diverse roles for ionotropic glutamate receptors on inhibitory interneurons in developing and adult brain. J Physiol 594:5471–5490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anis NA, Berry SC, Burton NR et al (1983) The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurons by N-methyl-D-aspartate. Br J Pharmacol 79:565–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Autry AE, Adachi M, Nosyreva E et al (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballarini F, Moncada D, Martinez MC et al (2009) Behavioral tagging is a general mechanism of long-term memory formation. Proc Natl Acad Sci U S A 106:14599–14604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45–56

    Article  CAS  PubMed  Google Scholar 

  • Berman RM, Cappiello A, Anand A et al (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  CAS  PubMed  Google Scholar 

  • Bliss TVP, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate gyrus of the anaesthetized rabbit. J Physiol (Lond) 232:331–356

    Article  CAS  Google Scholar 

  • Bloodgood BL, Sabatini BL (2005) Neuronal activity regulates diffusion across the neck of dendritic spines. Science 310:866–869

    Article  CAS  PubMed  Google Scholar 

  • Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125

    Article  CAS  PubMed  Google Scholar 

  • Carlen M, Meletis K, Siegle JH et al (2012) A critical role for NMDA receptors in parvalbumin interneurons for bamma rhythm induction and behavior. Mol Psychiatry 17:537–548

    Article  CAS  PubMed  Google Scholar 

  • Collingridge GL, Kehl SJ, McLennan H (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 334:33–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Yang Y, Ni Z et al (2018) Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554:323–327

    Article  CAS  PubMed  Google Scholar 

  • Dan Y, Poo MM (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44:23–30

    Article  CAS  PubMed  Google Scholar 

  • Diazgranados N, Ibrahim L, Brutsche NE et al (2010) A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry 67:793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois CJ, Lachamp PM, Sun L et al (2016) Presynaptic GluN2D receptors detect glutamate spillover and regulate cerebellar GABA release. J Neurophysiol 115:271–285

    Article  CAS  PubMed  Google Scholar 

  • Ebert B, Mikkelsen S, Thorkildsen C et al (1997) Norketamine, the main metabolite of ketamine, is a non-competitive NMDA receptor antagonist in the rat cortex and spinal cord. Eur J Pharmacol 333:99–104

    Article  CAS  PubMed  Google Scholar 

  • Everwine J, Miyashiro K, Kacharmina JE et al (2001) Local translation of classes of mRNAs that are targeted to neuronal dendrites. Proc Natl Acad Sci U S A 98:7080–7085

    Article  Google Scholar 

  • Frey U, Morris RGM (1997) Synaptic tagging and long-term potentiation. Nature 385:533–536

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JH, Yuste R, Tamas G (2003) Ca2+ imaging of mouse neocortical interneurone dendrites: contribution of Ca2+-permeable AMPA and NMDA receptors to subthreshold. J Physiol 551:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Burgos G, Lewis DA (2012) NMDA receptor hypofunction, Parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull 38:950–957

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashi MK, Tang C, Verpelli C et al (2009) The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell 137:159–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi-Takagi A, Yagishita S, Nakamura M et al (2015) Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525:333–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Hedrick NG, Yasuda R (2017) Regulation of Rho GTPase proteins during spine structural plasticity for the control of local dendritic plasticity. Curr Opin Neurobiol 45:193–201

    Article  CAS  PubMed  Google Scholar 

  • Henneberger C, Papouin T, Oliet S et al (2010) Long-term potentiation depends on release of D-serine from astrocytes. Nature 463:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hojo Y, Hattori T, Enami T et al (2004) Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017α and P450 aromatase localized in neurons. Proc Natl Acad Sci U S A 101:865–870

    Article  CAS  PubMed  Google Scholar 

  • Ide S, Ikeda K (2018) Mechanisms of the antidepressant effects of ketamine enantiomers and their metabolites. Biol Psychiatry 84:551–552

    Article  PubMed  Google Scholar 

  • Ide S, Ikekubo Y, Mishina M et al (2017) Role of NMDA receptor GluN2D subunit in the antidepressant effects of enantiomers of ketamine. J Pharmacol Sci 135:138–140

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Udo H, Inokuchi K et al (2007) Homer1a regulates the activity-induced remodeling of synaptic structures in cultured hippocampal neurons. Neuroscience 150:841–852

    Article  CAS  PubMed  Google Scholar 

  • Jouvenceau A, Billard JM, Haditsch U et al (2003) Different phosphates-dependent mechanisms mediate long-term depression and depotentiation of long-term potentiation in mouse hippocampal CA1 area. Eur J Neurosci 18:1279–1285

    Article  PubMed  Google Scholar 

  • Ju W, Morishita W, Tsui J et al (2004) Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat Neurosci 7:244–253

    Article  CAS  PubMed  Google Scholar 

  • Krystal JH, Laurence P, Seibyl JP et al (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine in humans. Arch Gen Psychiatry 51:199–214

    Article  CAS  PubMed  Google Scholar 

  • Larsen R, Corlew RJ, Henson MA et al (2014) NR3A-containing NMDARs promote neurotransmitter release and spike timing-dependent plasticity. Nat Neurosci 14:338–344

    Article  CAS  Google Scholar 

  • Lee JLC, Milton AL, Everitt BJ (2006) Reconsolidation and extinction of conditioned fear: inhibition and potentiation. J Neurosci 26:10051–10056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Choi JH, Lee N, Lee HR, Kim JI, Yu NK, Choi SL, Lee SH, Kim H, Kaang BK (2008) Synaptic protein degradation underlies destabilization of retrieved fear memory. Science 319:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Li N, Liu RJ, Dwyer JM et al (2011) Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69:754–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Ramirez S, Redondo RL et al (2014) Identification and manipulation of memory engram cells. Cold Spring Harb Symp Quant Biol 79:59–65

    Article  PubMed  Google Scholar 

  • Maeng S, Zarate CA, Du J et al (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of α-amino-3-hydroxy-5-methylisoxazole- 4-propionic acid receptors. Biol Psychiatry 63:349–352

    Article  CAS  PubMed  Google Scholar 

  • Malburg JE, Blendy JA (2005) Antidepressant action: to the nucleus and beyond. Trends Pharmacol Sci 26:631–638

    Article  CAS  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  CAS  PubMed  Google Scholar 

  • Malenka RC, Kauer JA, Zucker RS et al (1988) Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 242:81–84

    Article  CAS  PubMed  Google Scholar 

  • Markram H, Lübke J, Frotscher M et al (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies GCR et al (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald JF, Bartlett MC, Pahapill MP et al (1991) Actions of ketamine, phencyclidine and MK801 on NMDA receptor currents in cultured mouse hippocampal neurones. J Physiol 432:483–508

    Article  Google Scholar 

  • Miskys S, Hoffman E, Tyndale RF (2000) Regional and cellular induction of nicotine-metabolizing CYP2B1 in rat brain by chronic nicorine treatment. Biochem Pharmacol 59:1501–1511

    Article  Google Scholar 

  • Mizuno T, Kanazawa I, Sakurai M (2001) Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factor. Eur J Neurosci 14:701–708

    Article  CAS  PubMed  Google Scholar 

  • Moaddel R, Sanghvi M, Dossou KSS et al (2016) The distribution and clearance of (2S,6S)-hydroxynorketamine, an active ketamine metabolite, in Wistar rats. Pharmacol Res Perspect 3(4):e00157. https://doi.org/10.1002/prp2.157

    Article  CAS  Google Scholar 

  • Moskal JR, Kuo AG, Weiss C et al (2005) GLYX-13: a monoclonal antibody- derived peptide that acts as an N-methyl-D-aspartate receptor modulator. Neuropharmacology 49:1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa K, Zsiros V, Jiang Z et al (2012) GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology 62:1574–1583

    Article  CAS  PubMed  Google Scholar 

  • Neves G, Cooke SF, Bliss TVP (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9:65–75

    Article  CAS  PubMed  Google Scholar 

  • Nomoto M, Ohkawa N, Nichizono H et al (2016) Cellular tagging as a neural network mechanism for behavioural tagging. Nat Commun 7:12319. https://doi.org/10.1038/ncomms12319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P et al (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465

    Article  CAS  PubMed  Google Scholar 

  • Nugent AC, Ballard ED, Gould TD et al (2018) Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects. Mol Psychiatry 24(7):1040–1052. https://doi.org/10.1038/s41380-018-0028-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkawa N, Saitoh Y, Suzuki A et al (2015) Artificial association of pre-stored information to generate a qualitatively new memory. Cell Rep 11:261–269

    Article  CAS  PubMed  Google Scholar 

  • Okada D, Inokuchi K (2015) Activity-dependent protein transport as a synaptic tag. In: Sajikumar SR (ed) Synaptic tagging and capture. Springer, New York, pp 79–98

    Google Scholar 

  • Okada D, Yamagishi S, Sugiyama H (1989) Differential effects of phospholipase inhibitors in long-term potentiation in the rat hippocampal mossy fiber synapses and Schaffer/commissural synapses. Neurosci Lett 100:141–146

    Article  CAS  PubMed  Google Scholar 

  • Okada D, Ozawa F, Inokuchi K (2009) Input-specific spine entry of soma-derived Vesl-1S protein conforms to synaptic tagging. Science 324:904–909

    Article  CAS  PubMed  Google Scholar 

  • Orser BA, Pennefather PS, MacDonald JF (1997) Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors. Anesthesiology 86:903–917

    Article  CAS  PubMed  Google Scholar 

  • Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7:39–47

    Article  CAS  PubMed  Google Scholar 

  • Papouin T, Ladepeche L, Ruel J et al (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150:633–646

    Article  CAS  PubMed  Google Scholar 

  • Paul RK, Singh NS, Khadeer M et al (2014) (R,S)-ketamine metabolites (R,S)-norketamine and (2S, 6S)-hydroxynorketamine increase the mammalian target of rapamycin function. Anesthesiology 121:149–159

    Article  CAS  PubMed  Google Scholar 

  • Phelps EA, Delgado MR, Nearing KI et al (2004) Extinction learning in humans: Role of the amygdale and vmPFC. Neuron 43:897–905

    Article  CAS  PubMed  Google Scholar 

  • Quirk GJ, Mueller D (2008) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacol Rev 33:56–72

    Article  Google Scholar 

  • Ren Z, Pribiag H, Jefferson SJ et al (2016) Bidirectional homeostatic regulation of a depression-related brain state by gamma-aminobutyric acidergic deficits and ketamine treatment. Biol Psychiatry 80:457–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reus GZ, Carlessi AS, Titus SE et al (2015) A single dose of S-ketamine induces long-term antidepressant effects and decreases oxidative stress in adulthood rats following maternal deprivation. Dev Neurobiol 75:1268–1281

    Article  CAS  PubMed  Google Scholar 

  • Reymann KG, Frey JU (2007) The late maintenance of hippocampal LTP: requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications. Neuropharmacology 52:24–40

    Article  CAS  PubMed  Google Scholar 

  • Ryan MM, Ryan B, Kyrke-Smith M et al (2012) Temporal profiling of gene networks associated with the late phase of long-term potentiation in vivo. PLoS One 7:e40538. https://doi.org/10.1371/journal.pone.0040538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajikumar S, Frey JU (2004) Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol Learn Mem 82:12–25

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto H, Ariyoshi T, Kimpara N et al (2018) Synaptic weight set by Munc13-1 supramolecular assemblies. Nat Neurosci 21:41–49

    Article  CAS  PubMed  Google Scholar 

  • Schuman EM (1999) mRNA trafficking and local protein synthesis at the synapse. Neuron 23:645–648

    Article  CAS  PubMed  Google Scholar 

  • Sdrulla AD, Linden DJ (2010) Double dissociation between long-term depression and dendritic spine morphology in cerebellar Purkinge cells. Nat Neurosci 10:546–548

    Article  CAS  Google Scholar 

  • Shi AH, Hayashi Y, Esteban JA et al (2001) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105:331–343

    Article  CAS  PubMed  Google Scholar 

  • Shiller D, Monfis M-H, Raio CM et al (2010) Preventing the return of fear in humans using reconsolidation update mechanisms. Nature 463:49–53

    Article  CAS  Google Scholar 

  • Shirayama Y, Chen ACH, Nakagawa S et al (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22:3251–3261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva AJ, Kogan JH, Frankland PW et al (1998) CREB and memory. Annu Rev Neurosci 21:2127–2148

    Article  Google Scholar 

  • Singh H, Wray N, Schappi JM et al (2018) Disruption of lipid-raft localized Gαs/tubulin complexes by antidepressants: a unique feature of HDAC6 inhibitors, SSRI and tricyclic compounds. Neuropsychopharmacology 43:1481–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki K, Nosyreva E, Hunt KW et al (2017) Effects of a ketamine metabolite on synaptic NMDAR function. Nature 546:E1–E3. https://doi.org/10.1038/nature22084

    Article  CAS  PubMed  Google Scholar 

  • Thomas GM, Huganir RL (2004) MAPK cascade signaling and synaptic plasticity. Nat Rev Nurosci 5:173–183

    Article  CAS  Google Scholar 

  • Thompson SM, Kallarackal AJ, Kvarta MD et al (2015) An excitatory synapse hypothesis of depression. Trends Neurosci 38:279–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsien JZ (2000) Linking Hebb’s coincidence-detection to memory. Cirr Opin Neurobiol 10:266–273

    Article  CAS  Google Scholar 

  • Tyler MW, Yourish HB, Ionescu DF et al (2017) Classics in chemical neuroscience: ketamine. ACS Chem Nerosci 8:1122–1134

    Article  CAS  Google Scholar 

  • Wang SH, Morris RGM (2010) Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annu Rev Psychol 361:22.1–22.31

    Google Scholar 

  • Wang DO, Kim SM, Zhao Y et al (2009) Synapse- and stimulus-specific local translation during long-term neuronal plasticity. Science 324:1536–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson ST, Ballard ED, Bloch MH et al (2018) The effect of a single dose of intravenous ketamine on suicidal ideation: a systematic review and individual participant data meta-analysis. Am J Psychiatry 175:150–158

    Article  PubMed  Google Scholar 

  • Wray NH, Schappi JM, Singh H et al (2018) NMDAR-independent, cAMP-dependent antidepressant actions of ketamine. Mol Psychiatry 24(12):1833–1843. https://doi.org/10.1038/s41380-018-0083-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Cui Y, Sang K et al (2018a) Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 554:317–322

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Kobayashi S, Nakao K et al (2018b) AMPA receptor activation-independent antidepressant actions of ketamine metabolite (S)-Norketamine. Biol Psychiatry 84:591–600

    Article  CAS  PubMed  Google Scholar 

  • Zanos P, Piantadosi SC, Wu HQ et al (2015) The prodrug 4-Chlorokynurenine causes ketamine-like antidepressant effects, but not side effects, by NMDA/GlycineB-site inhibition. J Pharmacol Exp Ther 355:76–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanos P, Moaddel R, Morris P et al (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533:481–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanos P, Moaddel R, Morris PJ et al (2017) Zanos et al. reply. Nature 546:E4–E5. https://doi.org/10.1038/nature22085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarate CA, Jaskaran BS, Carlson PJ et al (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    Article  CAS  PubMed  Google Scholar 

  • Zarate CA, Mathews D, Ibrahim L et al (2013) A randomized trial of a low-trapping nonselective N-methyl-D-aspartate channel blocker in major depression. Biol Psychiatry 74:257–264

    Article  CAS  PubMed  Google Scholar 

  • Zhang JC, Li SX, Hashimoto K (2014) R(-)-ketamine shows greater potency and longer lasting antidepressant effects than S(+)-ketamine. Pharmacol Biochem Behav 116:137–141

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Homma K, Poo MM (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44:749–757

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Okada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okada, D. (2020). Synaptic Modulation in the Effect of Ketamine. In: Hashimoto, K., Ide, S., Ikeda, K. (eds) Ketamine. Springer, Singapore. https://doi.org/10.1007/978-981-15-2902-3_5

Download citation

Publish with us

Policies and ethics