Skip to main content

Decentralized Access Control Encryption in Public Blockchain

  • Conference paper
  • First Online:
Blockchain and Trustworthy Systems (BlockSys 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1156))

Included in the following conference series:

Abstract

Since its invention, the public blockchain has attracted more attention from both the academia and industry because of its fully decentralization and persistency features. However, the privacy issue in public blockchain is still challengeable. While there exists privacy preservation mechanisms proposed for the public blockchain, almost all of them can only solve partial of the privacy issue, either user privacy or data privacy indeed, in it. In this work, we present a decentralized access control encryption scheme which ensures user and data privacy simultaneously in public blockchain. With our cryptographic solution, the validity of one specific transaction can be publicly verified, while its content can only be retrieved by its intended receivers. Moreover, the origin of this transaction cannot be identified by any participant except the receivers in the network. Our analysis shows that our solution is really suitable to deploy in public blockchain and is proven secure under mathematical assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bitblender. https://bitblender.io

  2. Bitlaundry. http://app.bitlaundry.com

  3. Bitmixer. https://bitccointalk.org/index.php?topic=415396.160

  4. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_33

    Chapter  MATH  Google Scholar 

  5. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_3

    Chapter  Google Scholar 

  6. Bertilsson, M., Ingemarsson, I.: A construction of practical secret sharing schemes using linear block codes. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 67–79. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57220-1_53

    Chapter  Google Scholar 

  7. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_16

    Chapter  Google Scholar 

  8. Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_28

    Chapter  Google Scholar 

  9. Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption from multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 206–223. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_12

    Chapter  Google Scholar 

  10. Buterin, V.: On public and private blockchains (2015). https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/

  11. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2), 84–88 (1981)

    Article  Google Scholar 

  12. Damgård, I., Haagh, H., Orlandi, C.: Access control encryption: enforcing information flow with cryptography. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 547–576. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_21

    Chapter  MATH  Google Scholar 

  13. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 200–215. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_12

    Chapter  Google Scholar 

  14. Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broadcast encryption with constant-size ciphertexts or decryption keys. In: Takagi, T., Okamoto, E., Okamoto, T., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 39–59. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73489-5_4

    Chapter  Google Scholar 

  15. Fazio, N., Perera, I.M.: Outsider-anonymous broadcast encryption with sublinear ciphertexts. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 225–242. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_14

    Chapter  Google Scholar 

  16. Fernández-Caramés, T.M., Blanco-Novoa, Ó., Froiz-Míguez, I., Fraga-Lamas, P.: Towards an autonomous industry 4.0 warehouse: a UAV and blockchain-based system for inventory and traceability applications in big data-driven supply chain management. Sensors 19(10), 2394 (2019)

    Article  Google Scholar 

  17. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_40

    Chapter  Google Scholar 

  18. Fujisaki, E.: Sub-linear size traceable ring signatures without random oracles. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 393–415. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_25

    Chapter  Google Scholar 

  19. Genkin, D., Papadopoulos, D., Papamanthou, C.: Privacy in decentralized cryptocurrencies. Commun. ACM 61(6), 78–88 (2018)

    Article  Google Scholar 

  20. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 171–188. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_10

    Chapter  MATH  Google Scholar 

  21. Jaoude, J.A., Saadé, R.G.: Blockchain applications - usage in different domains. IEEE Access 7, 45360–45381 (2019)

    Article  Google Scholar 

  22. Kim, J., Susilo, W., Au, M.H., Seberry, J.: Adaptively secure identity-based broadcast encryption with a constant-sized ciphertext. IEEE Trans. Inf. Forensics Secur. 10(3), 679–693 (2015)

    Article  Google Scholar 

  23. Lai, J., Mu, Y., Guo, F., Susilo, W., Chen, R.: Fully privacy-preserving and revocable id-based broadcast encryption for data access control in smart city. Pers. Ubiquit. Comput. 21(5), 855–868 (2017)

    Article  Google Scholar 

  24. Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryption: adaptive security and efficient constructions in the standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 206–224. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_13

    Chapter  Google Scholar 

  25. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span programs and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_3

    Chapter  Google Scholar 

  26. Lu, H., Huang, K., Azimi, M., Guo, L.: Blockchain technology in the oil and gas industry: a review of applications, opportunities, challenges, and risks. IEEE Access 7, 41426–41444 (2019)

    Article  Google Scholar 

  27. Maxwell, G.: Coinjoin: Bitcoin pricacy for the real world (2013). https://en.bitcoin.it/wiki/CoinJoin

  28. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed e-cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, 19–22 May 2013, pp. 397–411 (2013)

    Google Scholar 

  29. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). https://bitcoin.org/en/bitcoin-paper

  30. Noether, S.: Ring signature confidential transactions for monero. IACR Cryptology ePrint Archive 2015, 1098 (2015)

    Google Scholar 

  31. Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger 1, 1–18 (2016)

    Article  Google Scholar 

  32. Novo, O.: Scalable access management in iot using blockchain: a performance evaluation. IEEE Internet Things J. 6(3), 4694–4701 (2019)

    Article  Google Scholar 

  33. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  34. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

    Chapter  Google Scholar 

  35. Phan, D.H., Pointcheval, D., Shahandashti, S.F., Strefler, M.: Adaptive CCA broadcast encryption with constant-size secret keys and ciphertexts. Int. J. Inf. Secur. 12(4), 251–265 (2013)

    Article  Google Scholar 

  36. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32

    Chapter  Google Scholar 

  37. Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: practical decentralized coin mixing for bitcoin. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 345–364. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1_20

    Chapter  Google Scholar 

  38. Salman, T., Zolanvari, M., Erbad, A., Jain, R., Samaka, M.: Security services using blockchains: a state of the art survey. IEEE Commun. Surv. Tutorials 21(1), 858–880 (2019)

    Article  Google Scholar 

  39. De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge proof systems. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 52–72. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_5

    Chapter  Google Scholar 

  40. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  41. Shen, C., Pena-Mora, F.: Blockchain for cities-a systematic literature review. IEEE Access PP(99), 1 (2018)

    Google Scholar 

  42. Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency monero. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 456–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_25

    Chapter  Google Scholar 

  43. Susilo, W., Chen, R., Guo, F., Yang, G., Mu, Y., Chow, Y.: Recipient revocable identity-based broadcast encryption: How to revoke some recipients in IBBE without knowledge of the plaintext. In: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, AsiaCCS 2016, Xi’an, China, 30 May - 3 June 2016, pp. 201–210 (2016)

    Google Scholar 

  44. Tassa, T.: Generalized oblivious transfer by secret sharing. Des. Codes Crypt. 58(1), 11–21 (2011)

    Article  MathSciNet  Google Scholar 

  45. Toyoda, K., Mathiopoulos, P.T., Sasase, I., Ohtsuki, T.: A novel blockchain-based product ownership management system (POMS) for anti-counterfeits in the post supply chain. IEEE Access 5, 17465–17477 (2017)

    Article  Google Scholar 

  46. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3–5 November 1982, pp. 160–164 (1982)

    Google Scholar 

  47. Zhang, L., Wu, Q., Mu, Y.: Anonymous identity-based broadcast encryption with adaptive security. In: Wang, G., Ray, I., Feng, D., Rajarajan, M. (eds.) CSS 2013. LNCS, vol. 8300, pp. 258–271. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03584-0_19

    Chapter  Google Scholar 

  48. Zyskind, G., Nathan, O., Pentland, A.: Enigma: Decentralized computation platform with guaranteed privacy. Computer Science (2015)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the Henan Key Laboratory of Network Cryptography Technology and the Henan High Education Key Project Foundational Research Plan, the project name is “The research on access control model of cloud-based medical data”, the project No. 19A520047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyuan Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, Z., Pan, H., Si, X., Zhu, W. (2020). Decentralized Access Control Encryption in Public Blockchain. In: Zheng, Z., Dai, HN., Tang, M., Chen, X. (eds) Blockchain and Trustworthy Systems. BlockSys 2019. Communications in Computer and Information Science, vol 1156. Springer, Singapore. https://doi.org/10.1007/978-981-15-2777-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2777-7_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2776-0

  • Online ISBN: 978-981-15-2777-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics