Skip to main content

Resultant Gradient Flow Method for Multiple Objective Programming Based on Efficient Computing

  • Conference paper
  • First Online:
Parallel Architectures, Algorithms and Programming (PAAP 2019)

Abstract

The process of blending gas transmission contains multiple kinds of influence factors that are related with the achievement of maximal overall profit for a refinery gas company. It is, therefore, a multiple objective optimization problems. To maximize overall profit, we proposes a multiple objective resultant gradient descent method (RGDM) to solve fractional, nonlinear, and multiple objective programming problems. Resultant gradient descent requires a proper direction of multiple objective functions. The proper direction in this paper is computed by gradient flow to approach to the global maximum values. Gradient flow is one of the forms of geometric flow, which is widely used in linear programming, least-squares approximation, optimization, and differential equation. It is the first time to be used in mathematical programming. Resultant gradient flow is calculated in linear programming, and the extremum can directly affect the extremum of the our multiple objective functions. Such steps can indirectly simplify the non-linear objective function by separate the single objective functions so that we can use the gradient flow method to solve the multi-objective problem of non-linear programming. It also embodies the stability and efficiency of the proposed gradient flow.

With the case study of a refinery gas company, this paper build a overall profit model. Also, we apply the proposed resultant method to solve this multi-objective problem by a planned strategy of how to supply natural gas to the residential area and schedule the initial coordination. Moreover, its solutions are displayed and compared with a genetic algorithm-based solver in our experimental study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charnes, A., Cooper, W.W.: Goal programming and multi-objective optimization, part I. Eur. J. Oper. Res. 1, 39–54 (1977)

    Article  Google Scholar 

  2. Schaible, S.: Fractional programming. Eur. J. Oper. Res. 12, 325–338 (1983)

    Article  MathSciNet  Google Scholar 

  3. Grouzeix, J., Ferland, J.A., Schaible, S.: An algorithm for generalized fractional programs. J. Optim. Theory Appl. 47, 35–49 (1985)

    Article  MathSciNet  Google Scholar 

  4. Xu, Z.: Solution of a fractional programming problem. J. Shanghai Univ. Technol. 1, 66–72 (1983)

    Google Scholar 

  5. Xu, Z.: Solving Generalized Fractional Programming by Programming with P+1 Parameters. Zhejiang Normal University (1986)

    Google Scholar 

  6. Lai, H.C., Huang, T.Y.: Minimax fractional programming for n-set functions and mixed-type duality under generalized convexity. J. Optim. Theory Appl. 139, 295–313 (2008)

    Article  MathSciNet  Google Scholar 

  7. Hanson, M.: Multi-objective programming under generalized type. J. Math. Anal. Appl. 261, 562–577 (2001)

    Article  MathSciNet  Google Scholar 

  8. Wang, W.: Sufficient optimality conditions for minimax fractional programming of set functions. Xi’an Univ. Electron. Sci. Technol. 27, 5 (2010)

    Google Scholar 

  9. Preda, V., Stancu-Minasian, I., Beldiman, M.: Generalized V-Type-l for multi-objective programming with N-set functions. J. Glob. Optim. 44, 131–148 (2009)

    Article  Google Scholar 

  10. Wang, W.: Sufficient optimality conditions for minimax fractional programming of n-set functions. Xi’an Univ. Electron. Sci. Technol. 33, 2 (2011)

    Google Scholar 

  11. Yadav, S.R., Mukherjee, R.N.: Duality for fractional minimax programming problem. J. Aust. Math. Soc. (Ser. B) 31, 484–492 (1990)

    Article  MathSciNet  Google Scholar 

  12. Chandra, S., Kumar, V.: Duality in fractional minimax programming. J. Aust. Math. Soc. (Ser. A) 58, 376–386 (1995)

    Article  MathSciNet  Google Scholar 

  13. Zalmai, G.J.: Optimality criteria and duality for a class of minimax programming problems with generalized conditions. Utilitas Mathematica 32, 35–37 (1987)

    MathSciNet  MATH  Google Scholar 

  14. Luo, C.: Solving Nonlinear Constrained Optimization Problem by Chaotic Search, p. 8. Shanghai Jiaotong University (2000)

    Google Scholar 

  15. Qian, F.: A hybrid algorithms for global optimum search by chaos. 27(3), 232–235 (1998)

    Google Scholar 

  16. Hestenes, M.R.: Multiplier and gradient method. J. Optim. Theory 4, 303–320 (1969)

    Article  MathSciNet  Google Scholar 

  17. Liu, D.: Solving Mixed Integer Nonlinear Programming Problem by Improved Particle Swarm Optimization. Wuhan University of Science and Technology, p. 6 (2005)

    Google Scholar 

  18. Chi, T.: Solving of Gasoline Blending Nonlinear Model and Oil Online Blending. Dalian University of Technology, p. 12 (2007)

    Google Scholar 

  19. Wang, P.Z., He, J., et al.: Linear adjusting programming in factor space. Submitted to CCPE

    Google Scholar 

  20. Singh, A., Forbes, J.F., Vermeer, P.J., Woo, S.S.: Model-based real-time optimization of automotive gasoline blending operations. J. Process Control 10(10), 43–58 (2000)

    Article  Google Scholar 

  21. Wang, P.Z., Sugeno, M.: Factorial field and the background structure of fuzzy sets. Fuzzy Math. 02, 45–54 (1982)

    Google Scholar 

  22. Dantzig, G.B.: Linear programming. Oper. Res. 50(1), 42–47 (2002)

    Article  MathSciNet  Google Scholar 

  23. Wang, P.Z.: Cone-cutting: a variant representation of pivot in Simplex. Inf. Technol. Decis. Making 10(1), 65–82 (2011)

    Article  Google Scholar 

  24. Wang, P.Z.: Discussions on Hirsch conjecture and the existence of strongly polynomial-time simplex variants. Ann. Data Sci. 1(1), 41–71 (2014). https://doi.org/10.1007/s40745-014-0005-9

    Article  Google Scholar 

  25. Wang, P.Z., Lui, H.C., Liu, H.T., Guo, S.C.: Gravity sliding algorithm for linear programming. Ann. Data Sci. 4(2), 193–210 (2017). https://doi.org/10.1007/s40745-017-0108-1

    Article  Google Scholar 

  26. Hubbard, J.H., Hubbard, B.B.: Vector Calculus, Linear Algebra, and Differential Forms. A Unified Approach. Prentice-Hall, Upper Saddle River (1999). ISBN 0-13-657446-7

    Google Scholar 

  27. Roll, J., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of ‘Eckart-Young’ decomposition. Psychometrika 35, 283–319 (1970)

    Article  Google Scholar 

  28. Harshman, R.A.: Foundations of the PARAFAC procedure: models and conditions for an explanatory multi-modal factor analysis. UCLA Working Pap. Phonetics 16(1), 84 (1970)

    Google Scholar 

  29. Chang, B.B., Zhang, Q.L., Xie, L., et al.: The application of NIR in oil blending. Chin. J. Sci. Instrument 22(3), 408–410 (2001)

    Google Scholar 

  30. Xiong, F., Zhang, X., Li, S., Gai, Y.: Nonlinear planning for oilfield development based on profit maximization. School of Information and Control Engineering, University of Petroleum, vol. 28, no. 1 (2004)

    Google Scholar 

  31. Belokvostov, M.S., Okorokov, V.A.: System for blending gasoline distiliates. Chem. Pet. Eng. 32(6), 543–544 (1996)

    Article  Google Scholar 

  32. Mamat, H., Aini, I.N., Said, M., Jamaludin, R.: Physicochemical characteristics of palm oil and sunflower oil blends fractionated at different temperatures. Food Chem. 91(4), 731–736 (2004)

    Article  Google Scholar 

  33. Guo, Y., He, J., Xua, L., Liu, W.: A novel multi-objective particle swarm optimization for comprehensible credit scoring. Soft Comput. 23, 9009–9023 (2018). https://doi.org/10.1007/s00500-018-3509-y. (Impact Factor: 2.367)

    Article  Google Scholar 

  34. Zhang, Z., He, J., Gao, G., Tian, Y.: Sparse multi-criteria optimization classifier for credit risk evaluation. Soft. Comput. 23(9), 3053–3066 (2019)

    Article  Google Scholar 

  35. He, J., Zhang, Y., Shi, Y., Huang, G.: Domain-driven classification based on multiple criteria and multiple constraint-level programming for intelligent credit scoring. IEEE Trans. Knowl. Data Eng. 22(6), 826–838 (2010). (ERA A, 2011 Impact Factor: 1.657, SNIP 3.576)

    Article  Google Scholar 

  36. Shi, Y., He, J., et al.: Computer-based algorithms for multiple criteria and multiple constraint level integer linear programming. Comput. Math. Appl. 49(5), 903–921 (2005). (ERA Rank A, ISI Impact Factor: 1.472, SNIP 1.248)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, B. et al. (2020). Resultant Gradient Flow Method for Multiple Objective Programming Based on Efficient Computing. In: Shen, H., Sang, Y. (eds) Parallel Architectures, Algorithms and Programming. PAAP 2019. Communications in Computer and Information Science, vol 1163. Springer, Singapore. https://doi.org/10.1007/978-981-15-2767-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2767-8_43

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2766-1

  • Online ISBN: 978-981-15-2767-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics