Skip to main content

Secure Multi-Party Computation on Blockchain: An Overview

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1163))

Abstract

Secure multi-party computation (SMPC) is a hot topic in the field of cryptography. It focuses on finishing computation tasks without revealing users’ inputs and outputs in decentralized scenarios. Although many researches have been conducted to perform SMPC protocols, it is hard to obtain fairness while most participants in SMPC are dishonest. Recently, the foundation of cryptocurrency, blockchain has attracted the attention of many scholars. Since blockchain’s ability to provide security and incentives, researchers start to make use of blockchain to provide fairness in SMPC protocols and increase efficiency. In this paper, we present a brief survey on how to use blockchain technology to perform SMPC protocol. We start by introducing the concept of secure computation and its security requirements. Then, we explain how we can utilize blockchain to provide fairness and present the basic model. We summarize state-of-the-art blockchain based SMPC applications and conclude this paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982), pp. 160–164. IEEE Computer Society, Washington (1982)

    Google Scholar 

  2. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 137–156. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_8

    Chapter  Google Scholar 

  3. Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the 27th Annual Symposium on Foundations of Computer Science (SFCS 1986), pp. 162–167. IEEE Computer Society, Washington (1986)

    Google Scholar 

  4. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_4

    Chapter  MATH  Google Scholar 

  5. Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure function evaluation. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security (CCS 2012), pp. 797–808. ACM, New York (2012)

    Google Scholar 

  6. Kerschbaum, F.: Oblivious outsourcing of garbled circuit generation. In: The 30th Annual ACM Symposium. ACM (2015)

    Google Scholar 

  7. Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: An overview of blockchain technology: architecture, consensus, and future trends. In: 2017 IEEE International Congress on Big Data (BigData Congress), Honolulu, HI, pp. 557–564 (2017)

    Google Scholar 

  8. Aitzhan, N.Z., Svetinovic, D.: Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Trans. Dependable Secure Comput. 15, 840–852 (2016)

    Article  Google Scholar 

  9. Zyskind, G., Nathan, O., Pentland, A.: Decentralizing privacy: using blockchain to protect personal data. In: 2015 IEEE Security and Privacy Workshops, San Jose, CA, pp. 180–184 (2015)

    Google Scholar 

  10. Guy, Z.: Efficient secure computation enabled by blockchain technology (2016)

    Google Scholar 

  11. Benhamouda, F., Halevi, S., Halevi, T.: Supporting private data on hyperledger fabric with secure multiparty computation. In: 2018 IEEE International Conference on Cloud Engineering (IC2E). IEEE (2018)

    Google Scholar 

  12. Liang, X., Shetty, S., Tosh, D., Kamhoua, C., Kwiat, K., Njilla, L.: ProvChain: a blockchain-based data provenance architecture in cloud environment with enhanced privacy and availability. In: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), Madrid, pp. 468–477 (2017)

    Google Scholar 

  13. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multiparty computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy, San Jose, CA, pp. 443–458 (2014)

    Google Scholar 

  14. Zyskind, G., Nathan, O., Pentland, A.: Enigma: Decentralized Computation Platform with Guaranteed Privacy. Computer Science (2015)

    Google Scholar 

  15. Kumaresan, R., Vaikuntanathan, V., Vasudevan, P.N.: Improvements to secure computation with penalties. In: ACM SIGSAC Conference 2016 (2016)

    Google Scholar 

  16. Choudhuri, A.R., Green, M., Jain, A., Kaptchuk, G., Miers, I.: Fairness in an unfair world: fair multiparty computation from public bulletin boards. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS 2017), pp. 719–728. ACM, New York (2017)

    Google Scholar 

  17. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_24

    Chapter  Google Scholar 

  18. Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system based on the XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45748-8_5

    Chapter  MATH  Google Scholar 

  19. Multiparty computation with SPDZ online phase and MASCOT offline phase. Github (2017). https://github.com/bristolcrypto/SPDZ-2

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2017YFB0203201), the Science and Technology Program of Guangdong Province, China (No. 2017A010101039), and the Science and Technology Program of Guangzhou, China (No. 201904010209).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanrui Zhong or Yingpeng Sang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, H., Sang, Y., Zhang, Y., Xi, Z. (2020). Secure Multi-Party Computation on Blockchain: An Overview. In: Shen, H., Sang, Y. (eds) Parallel Architectures, Algorithms and Programming. PAAP 2019. Communications in Computer and Information Science, vol 1163. Springer, Singapore. https://doi.org/10.1007/978-981-15-2767-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2767-8_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2766-1

  • Online ISBN: 978-981-15-2767-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics