Skip to main content

Deep Residual Optimization for Stereoscopic Image Color Correction

  • Conference paper
  • First Online:
Parallel Architectures, Algorithms and Programming (PAAP 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1163))

Abstract

The color correction algorithm is designed to eliminate color discrepancies between image pairs. Compared with the conventional algorithm, color correction for 3D stereoscopic images not only needs to achieve the color consistency of the resulting image and the reference image but also expected to ensure the structural consistency of the resulting image and the target image. For this problem, we propose a stereoscopic image color correction algorithm based on deep residual optimization. First, we get an initial result image by fusing a global color correction image and a dense matching image of the stereo image pair. Then, a residual image optimization scheme is used to improve the structural deformation and color inconsistency of the initial result caused by mismatching and fusion. By combining the target image with the optimized residual image, the structure and clarity of the target image can be retained to the maximum extent. In addition, we use the perceptual loss and per-pixel loss to improve the structural deformation and local color inconsistency while training the optimization network. Experimental results show the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.image-net.org/

  2. Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vision 74(1), 59–73 (2007)

    Article  Google Scholar 

  3. Daniel, S.: http://vision.middlebury.edu/stereo/data/

  4. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  5. Fecker, U., Barkowsky, M., Kaup, A.: Histogram-based prefiltering for luminance and chrominance compensation of multiview video. IEEE Trans. Circuits Syst. Video Technol. 18(9), 1258–1267 (2008)

    Article  Google Scholar 

  6. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  7. Niu, Y., Zhang, H., Guo, W., Ji, R.: Image quality assessment for color correction based on color contrast similarity and color value difference. IEEE Trans. Circuits Syst. Video Technol. 28(4), 849–862 (2016)

    Article  Google Scholar 

  8. Niu, Y., Zheng, X., Zhao, T., Chen, J.: Visually consistent color correctionfor stereoscopic images and videos. IEEE Trans. Circ. Syst. Video Technol. (2019)

    Google Scholar 

  9. Park, J., Tai, Y.W., Sinha, S.N., So Kweon, I.: Efficient and robust color consistency for community photo collections. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 430–438 (2016)

    Google Scholar 

  10. Pitie, F., Kokaram, A.C., Dahyot, R.: N-dimensional probability density function transfer and its application to color transfer. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005), Volume 1, vol. 2, pp. 1434–1439. IEEE (2005)

    Google Scholar 

  11. Pitié, F., Kokaram, A.C., Dahyot, R.: Automated colour grading using colour distribution transfer. Comput. Vis. Image Underst. 107(1–2), 123–137 (2007)

    Article  Google Scholar 

  12. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graphics Appl. 21(5), 34–41 (2001)

    Article  Google Scholar 

  13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  14. Wang, Q., Yan, P., Yuan, Y., Li, X.: Robust color correction in stereo vision. In: 2011 18th IEEE International Conference on Image Processing, pp. 965–968. IEEE (2011)

    Google Scholar 

  15. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  16. Xiao, X., Ma, L.: Color transfer in correlated color space. In: Proceedings of the 2006 ACM International Conference on Virtual Reality Continuum and Its Applications, pp. 305–309. ACM (2006)

    Google Scholar 

  17. Xiao, X., Ma, L.: Gradient-preserving color transfer. In: Computer Graphics Forum, vol. 28, pp. 1879–1886. Wiley Online Library (2009)

    Google Scholar 

  18. Yan, Z., Li, X., Li, M., Zuo, W., Shan, S.: Shift-Net: image inpainting via deep feature rearrangement. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_1

    Chapter  Google Scholar 

  19. Yao, C.H., Chang, C.Y., Chien, S.Y.: Example-based video color transfer. In: IEEE International Conference on Multimedia & Expo (2016)

    Google Scholar 

  20. Zhang, M., Georganas, N.D.: Fast color correction using principal regions mapping in different color spaces. Real-Time Imaging 10(1), 23–30 (2004)

    Article  Google Scholar 

  21. Zheng, X., Niu, Y., Chen, J., Chen, Y.: Color correction for stereoscopic image based on matching and optimization. In: 2017 International Conference on 3D Immersion (IC3D), pp. 1–8. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhen Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, Y., Liu, P., Niu, Y. (2020). Deep Residual Optimization for Stereoscopic Image Color Correction. In: Shen, H., Sang, Y. (eds) Parallel Architectures, Algorithms and Programming. PAAP 2019. Communications in Computer and Information Science, vol 1163. Springer, Singapore. https://doi.org/10.1007/978-981-15-2767-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2767-8_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2766-1

  • Online ISBN: 978-981-15-2767-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics