Skip to main content

Iterative Filtering-Based Automated Method for Detection of Normal and ALS EMG Signals

  • Chapter
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1124))

Abstract

Electromyogram (EMG) signals have been proved very useful in identification of neuromuscular diseases (NMDs). In the proposed work, we have proposed a new method for the classification of normal and abnormal EMG signals to identify amyotrophic lateral sclerosis (ALS) disease. First, we have obtained all motor unit action potentials (MUAPs) from EMG signals. Extracted MUAPs are then decomposed using iterative filtering (IF) decomposition method and intrinsic mode functions (IMFs) are obtained. Features like Euclidean distance quadratic mutual information (QMIED), Cauchy–Schwartz quadratic mutual information (QMICS), cross information potential (CIP), and correntropy (COR) are computed for each level of IMFs separately. Statistical analysis of features has been performed by the Kruskal–Wallis statistical test. For classification, the calculated features are given as an input to the three different classifiers: JRip rules classifier, reduces error pruning (REP) tree classifier, and random forest classifier for the classification of normal and ALS EMG signals. The results obtained from classification process show that proposed classification method provides very accurate classification of normal and ALS EMG signals and better than the previously existing methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E.R. Kandel, J.H. Schwartz, Principles of Neural Science (McGraw Hill, Appleton & Lange, 2012)

    Google Scholar 

  2. European respiratory journal, ERS publications. https://erj.ersjournals.com/

  3. A.E.H. Emery, Population frequencies of inherited neuromuscular diseases—A world survey. Neuromuscul. Disord. 1(1), 19–29 (1991)

    Article  Google Scholar 

  4. M.B.I. Raez, M.S. Hussain, F.Mohd.Yasin, Techniques of EMG signal analysis: detection, processing, classification and applications, 8, 11–35 (2006)

    Google Scholar 

  5. R.R. Sharma, P. Chandra, R.B. Pachori, Electromyogram signal analysis using eigenvalue decomposition of the Hankel matrix. In: Advances in Intelligent Systems and Computing, vol 748. (Springer, Singapore, 2019)

    Google Scholar 

  6. A. Subasi, M. Yilmaz, H.R. Ozcalik, Classification of EMG signals using wavelet neural network. J. Neurosci. Methods 156(1), 360–367 (2006)

    Article  Google Scholar 

  7. A.B.M.S.U. Doulah, S.A. Fattah, Neuromuscular disease classification based on mel frequency cepstrum of motor unit action potential. In: International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT), pp. 1–4 (2014)

    Google Scholar 

  8. P.U. Kiran, N. Abhiram, S. Taran, V. Bajaj, TQWT based features for classification of ALS and healthy EMG signals. Am. J. Comput. Sci. Inf. Technol. 6(2), 19 (2018). https://doi.org/10.21767/2349-3917.100019

  9. A. Sengur, Y. Akbulut, Y. Guo, V. Bajaj, Classification of amyotrophic lateral sclerosis disease based on convolutional neural network and reinforcement sample learning algorithm. Health Inf. Sci. Syst. 5(1), 9 (2017). https://doi.org/10.1007/s13755-017-0029-6

    Article  Google Scholar 

  10. A. Hazarika, L. Dutta, M. Barthakur, M. Bhuyan, Two-fold feature extraction technique for biomedical signals classification. In: International Conference on Inventive Computation Technologies, vol. 2, pp. 1–4 (2016)

    Google Scholar 

  11. E. Stalberg, C. Bischoff, B. Falck, Outliers, a way to detect abnormality in quantitative EMG. Muscle Nerve 17, 392–399 (1994)

    Article  Google Scholar 

  12. O. Ulkir, G. Gokmen, E. Kaplanoglu, EMG signal classification using fuzzy logic. Balakan J. Electrcical Comput. Eng. 5(2), 97–101 (2017)

    Article  Google Scholar 

  13. E.W. Abel, H. Meng, A. Forster, D. Holder, Singularity characteristics of needle EMG IP signals. IEEE Trans. Biomed. Eng. 53(2), 219–225 (2006)

    Article  Google Scholar 

  14. V.K. Mishra, V. Bajaj, A. Kumar, G.K. Singh, Analysis of ALS andnormal EMG signals based on empirical mode decomposition. IET Sci., Meas. Technol. 10(8), 963–971 (2016)

    Article  Google Scholar 

  15. N.F. Guler, S. Kocer, Classification of EMG signals using PCA and FFT. J. Med. Syst. 29(3), 241–255 (2005)

    Article  Google Scholar 

  16. D. Joshi, A. Tripathi, R. Sharma, R.B. Pachori, Computer aided detection of abnormal EMG signals based on tunable-Q wavelet transform. In: International Conference on Signal Processing and Integrated Networks (2017)

    Google Scholar 

  17. R.R. Sharma, M. Kumar, R.B. Pachori, Classification of EMG Signals Using Eigenvalue Decomposition Based Time-Frequency Representation (Biomedical and Clinical Engineering for Healthcare Advancement, IGI Global, 2019)

    Google Scholar 

  18. K.C. McGill, Z.C. Lateva, H.R. Marateb, EMGLAB: an interactive EMG decomposition program. J. Neurosci. Methods 149(2), 121–133 (2005)

    Article  Google Scholar 

  19. K.C. McGill, Z.C. Lateva, M.E. Johanson, Validation of a computer-aided EMG decomposition method. Proceeding IEEE Eng. Med. Biol. Soc. Conf. 4744–4747 (2004)

    Google Scholar 

  20. M. Nikolic, C. Krarup, EMGTools, an adaptive and versatile tool for detailed EMG analysis. IEEE Trans. Biomed. Eng. 58, 2707–2718 (2011)

    Article  Google Scholar 

  21. K.C. McGill, Optimal resolution of superimposed action potentials. IEEE Trans. Biomed. Eng. 49, 640–650 (2002)

    Article  Google Scholar 

  22. L. Lin, Y. Wang, H. Zhou, Iterative filtering as an alternative algorithm for empirical mode decomposition. Adv. Adapt. Data Anal. 1(4), 543–560 (2009)

    Article  MathSciNet  Google Scholar 

  23. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 454(1971), 903 (1998)

    Article  MathSciNet  Google Scholar 

  24. A. Cicone, J. Liu, H. Zhou, Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis (2014). arXiv:1411.6051

  25. R. Sharma, R.B. Pachori, A. Upadhyay, Automatic sleep stages classification based on iterative filtering of electroencephalogram signals. Neural Comput. Appl. (2017)

    Google Scholar 

  26. V. Tangkaratt, H. Sasaki, M. Sugiyama, Direct Estimation of the Derivative of Quadratic Mutual Information with Application in Supervised Dimension Reduction (2015), arXiv:1508.01019v1, Accessed 5 Aug 2015

  27. J.C. Principe, D. Xu, Q. Zhao, J.W. Fisher, Learning from examples with information theoretic criteria. VLSI Signal Processing 26(1–2), 61–77 (2000)

    Article  Google Scholar 

  28. D. xu, Energy, entropy and information potential for neural computation 31–33 (1999)

    Google Scholar 

  29. J.W. Xu, A.R.C. Paiva, I. Park, J.C. Principe, A reproducing kernel Hilbert space framework for information-theoretic learning. IEEE Trans. Signal Process. 56(12), 5891–5902 (2008)

    Article  MathSciNet  Google Scholar 

  30. H. Tang, H. Li, Information theoretic learning: Renyi’s entropy and kernel perspectives. IEEE Comput. Intell. Mag. 6(3), 60–62 (2011)

    Google Scholar 

  31. A. Gunduz, J.C. Principe, Correntropy as a novel measure for nonlinearity tests. Signal Process. 89(1), 14–23 (2009)

    Article  Google Scholar 

  32. W. Liu, P.P. Pokharel, J.C. Principe, Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 55(11), 5286–5298 (2007)

    Article  MathSciNet  Google Scholar 

  33. F.J. Rudolf, W.J. William, Statistical Methods (Academic Press, San Diego, CA, USA, 1993)

    Google Scholar 

  34. P.E. McKight, J. Najab, Kruskal-Wallis test. Corsini Encycl. Psychol. (2010)

    Google Scholar 

  35. T.P. Hettmansperger, Statistical Methods Based on Ranks (Wiley, New York, 1984)

    MATH  Google Scholar 

  36. E. Ostertagova, O. Ostertag, J. Kovac, Methodology and application of the Kruskal-Wallis test. Appl. Mech. Mater. 611, 115–120 (2014)

    Article  Google Scholar 

  37. J.S. Maritz, Distribution-Free Statistical Methods (CRC Press, Chapman and Hall Mathematics Series, 1995)

    Google Scholar 

  38. C. Siegel, Castellan, Nonparametric Statistics for the Behavioral Sciences, 2nd edn. (McGraw-Hill, New York, 1988). ISBN 0070573573

    Google Scholar 

  39. G.W. Corder, D.I. Foreman, Nonparametric Statistics for Non-Statisticians (Wiley, 2009), pp. 99–105. ISBN 9780470454619

    Google Scholar 

  40. W.W. Cohen, Fast effective rule induction. In: 12th International Conference on Machine Learning (1995), pp. 115–123

    Google Scholar 

  41. V. Parsania, N.N. Jani, V. Bhalodiya, Applying Naïve bayes, BayesNet, PART, JRip and OneR Algorithms on Hypothyroid Database for Comparative Analysis, IJDI-ERET, 3 (2014)

    Google Scholar 

  42. R. Anil, R.P. Aharwal, D. Meghna, S.P. Saxena, R. Manmohan, J48 and JRIP rules for E-Governance data. Int. J. Comput. Sci. Secur. (IJCSS), 5(2) (2011)

    Google Scholar 

  43. I.H. Witten, E. Frank, Data mining: practical machine learning tools and techniques-2nd edn., The United States of America, Morgan Kaufmann series in data management systems (2005)

    Google Scholar 

  44. B. Srinivasan, P. Mekala, Mining social networking data for classification using REPTree. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 2, 155–160 (2014)

    Google Scholar 

  45. M. Pal, Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26, 217–222 (2005)

    Article  Google Scholar 

  46. L. Breiman, Random Forests-Random Features, Technical Report 567 (University of California, Berkeley, Statistics Department, 1999)

    Google Scholar 

  47. T.K. Ho, Random decision forests. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition (Montreal, QC, 1995), pp. 278–282

    Google Scholar 

  48. T. Shi, S. Horvath, Unsupervised learning with random forest predictors. J. Comput. Graph. Stat. 15, 118–138 (2006)

    Article  MathSciNet  Google Scholar 

  49. A. Baratloo, M. Hosseini, A. Negida, G.E. Ashal, Part 1: Simple definition and calculation of accuracy, sensitivity and specificity. Emergency 3(2), 48–49 (2015)

    Google Scholar 

  50. W. Zhu, N. Zeng, N. Wang, Sensitivity, Specificity, Accuracy, Associated Confidence Interval and ROC Analysis with Practical SAS Implementations (North-East SAS Users Group, Health Care and Life Sciences, 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Bilas Pachori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Pachori, R.B. (2020). Iterative Filtering-Based Automated Method for Detection of Normal and ALS EMG Signals. In: Jain, S., Paul, S. (eds) Recent Trends in Image and Signal Processing in Computer Vision. Advances in Intelligent Systems and Computing, vol 1124. Springer, Singapore. https://doi.org/10.1007/978-981-15-2740-1_3

Download citation

Publish with us

Policies and ethics