Skip to main content

Microcontroller-Based Detection of Diabetes and Ketosis State Using Breath Sensors

  • Chapter
  • First Online:
Recent Trends in Image and Signal Processing in Computer Vision

Abstract

Researchers have demonstrated that breath acetone is an effective biomarker of type 2 diabetes which a habitual form of diabetes. Conventional way for the detection of glucose levels is through invasive technique which involves pricking the finger and collecting blood samples. This is not only painful and blood consuming but also time-consuming and expensive. Therefore, there has been a great demand for the non-invasive techniques of blood glucose determinations in the commercial market. Researchers have been attempting to develop a number of non-invasive techniques where the diabetes is detected by different methods outside the body, without puncturing the skin or without taking the blood sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization, Diabetes action now: an initiative of the World Health Organization and the International Diabetes Federation (2004)

    Google Scholar 

  2. Diabetes Prevention Trial-Type 1 Diabetes Study Group, Effects of insulin in relatives of patients with type 1 diabetes mellitus. N. Engl. J. Med. 346(22), 1685–1691 (2002)

    Article  Google Scholar 

  3. J. Tuomilehto, J. Lindström, J.G. Eriksson, T.T. Valle, H. Hämäläinen, P. Ilanne-Parikka, S. Keinänen-Kiukaanniemi, M. Laakso, A. Louheranta, M. Rastas, V. Salminen, Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344(18), 1343–1350 (2001)

    Article  Google Scholar 

  4. P.J. Donovan, H.D. McIntyre, Drugs for gestational diabetes. Aust. Prescriber 33(5), (2010)

    Article  Google Scholar 

  5. J. Lindström, P. Ilanne-Parikka, M. Peltonen, S. Aunola, J.G. Eriksson, K. Hemiö, H. Hämäläinen, P. Härkönen, S. Keinänen-Kiukaanniemi, M. Laakso, A. Louheranta, Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. The Lancet 368(9548), 1673–1679 (2006)

    Article  Google Scholar 

  6. S. Bolen, L. Feldman, J. Vassy, L. Wilson, H.C. Yeh, S. Marinopoulos, C. Wiley, E. Selvin, R. Wilson, E.B. Bass, F.L. Brancati, Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann. Intern. Med. 147(6), 386–399 (2007)

    Article  Google Scholar 

  7. J.C. Cash, C.A. Glass (eds.), Family practice guidelines (Springer Publishing Company, 2017)

    Google Scholar 

  8. A.H. Romano, T. Conway, Evolution of carbohydrate metabolic pathways. Res. Microbiol. 147(6–7), 448–455 (1996)

    Article  Google Scholar 

  9. P.C. Champe, R.A. Harvey, D.R. Ferrier, Biochemistry (Lippincott Williams & Wilkins, 2005)

    Google Scholar 

  10. D.G. Johnston, A. Pernet, A. McCulloch, G. Blesa-Malpica, J.M. Burrin, K.G. Alberti, Some hormonal influences on glucose and ketone body metabolism in normal human subjects, in Ciba Foundation Symposium, vol. 87 (1982), pp. 168–191

    Chapter  Google Scholar 

  11. L. Stryer, Biochemistry, 4th edn (1995)

    Google Scholar 

  12. G.F. Cahill Jr., R.L. Veech, Ketoacids? Good medicine? Trans. Am. Clin. Climatol. Assoc. 114, 149 (2003)

    Google Scholar 

  13. J.W. Pelley, Citric acid cycle, electron transport chain, and oxidative phosphorylation. Elsevier’s Integrated Review Biochemistry, 2nd edn (WB Saunders, Philadelphia, PA, 2012), pp. 57–65

    Google Scholar 

  14. T. Fukao, G. Mitchell, J.O. Sass, T. Hori, K. Orii, Y. Aoyama, Ketone body metabolism and its defects. J. Inherit. Metab. Dis. 37(4), 541–551 (2014)

    Article  Google Scholar 

  15. C.R. Barnett, Y.A. Barnett, Ketone Bodies (2003)

    Google Scholar 

  16. S.M. Phinney, J. Volek, The Art And Science Of Low Carbohydrate Performance (Beyond Obesity LLC, 2011)

    Google Scholar 

  17. A.E. Kitabchi, G.E. Umpierrez, J.M. Miles, J.N. Fisher, Hyperglycemic crises in adult patients with diabetes. Diab. Care 32(7), 1335–1343 (2009)

    Article  Google Scholar 

  18. K.C. Bilchick, R.A. Wise, Paradoxical physical findings described by Kussmaul: pulsus paradoxus and Kussmaul’s sign. Lancet 359(9321), 1940–1942 (2002)

    Article  Google Scholar 

  19. A. Kußmaul, Zur lehre vom diabetes mellitus. Dtsch. Arch. Klin. Med. 14, 1–46 (1874)

    Google Scholar 

  20. N.H.S. Diabetes, Joint British Diabetes Societies Inpatient Care Group. The Management of Diabetic Ketoacidosis in Adults (2011). www.diabetologists-abcd.org.uk/JBDS_DKA_Management.pdf. Accessed 7 April 2014

  21. S. Misra, N.S. Oliver, Diabetic ketoacidosis in adults. BMJ 351, h5660 (2015)

    Article  Google Scholar 

  22. V. Ruzsányi, M.P. Kalapos, C. Schmidl, D. Karall, S. Scholl-Bürgi, M. Baumann, Breath profiles of children on ketogenic therapy. J. Breath Res. 12(3), 036021 (2018)

    Article  Google Scholar 

  23. A. Kuksis, A. Ravandi, M. Schneider, Covalent binding of acetone to aminophospholipids in vitro and in vivo. Ann. N. Y. Acad. Sci. 1043(1), 417–439 (2005)

    Article  Google Scholar 

  24. S.S. Likhodii, I. Serbanescu, M.A. Cortez, P. Murphy, O.C. Snead III, W.M. Burnham, Anticonvulsant properties of acetone, a brain ketone elevated by the ketogenic diet. Ann. Neurol. 54(2), 219–226 (2003)

    Article  Google Scholar 

  25. R. Davies, Studies on the acetone-butanol fermentation: 4. Acetoacetic acid decarboxylase of Cl. acetobutylicum (BY). Biochem. J. 37(2), 230 (1943)

    Article  Google Scholar 

  26. V. Saasa, T. Malwela, M. Beukes, M. Mokgotho, C.P. Liu, B. Mwakikunga, Sensing technologies for detection of acetone in human breath for diabetes diagnosis and monitoring. Diagnostics 8(1), 12 (2018)

    Article  Google Scholar 

  27. W.H. Hofmann, Vi-Jon Laboratories Inc, Nail polish remover. U.S. Patent 4,824,662 (1989)

    Google Scholar 

  28. G. Mansour, D. El-rafey, Ethyl glucuronide, ethyl sulfate and acetone as biomarkers for alcohol based hand sanitizers chronic exposure in health care workers. Ain Shams J Forensic Med. Clin. Toxicol. 33(2), 80–91 (2019)

    Article  Google Scholar 

  29. I.P. Dick, P.G. Blain, F.M. Williams, The percutaneous absorption and skin distribution of lindane in man: I. in vivo studies. Hum. Exp. Toxicol. 16(11), 645–651 (1997)

    Google Scholar 

  30. S.B. Azam, Comparative study on the antibacterial activities of four commercially available antiseptics-Dettol, Hexisol, Oralon and Betadine against Staphylococcus aureus, Klebsiella pneumoniae, Bacillus cereus, and Pseudomonas aeruginosa. Doctoral dissertation, BRAC Univeristy, 2017

    Google Scholar 

  31. G. Shi, G. Xue, C. Li, S. Jin, Layered poly (naphthalene) films prepared by electrochemical polymerization. Polym. Bull. 33(3), 325–329 (1994)

    Article  Google Scholar 

  32. G. Neri, A. Bonavita, G. Micali, N. Donato, Design and development of a breath acetone MOS sensor for ketogenic diets control. IEEE Sens. J. 10(1), 131–136 (2009)

    Article  Google Scholar 

  33. V. Ruzsányi, M. P. Kalapos, J. Breath Res. 11 024002 (2017)

    Article  Google Scholar 

  34. ElProCus—Electronic Projects for Engineering Students. MQ135 Alcohol Sensor Circuit and Its Working (2019). Available at: https://www.elprocus.com/mq-135-alcohol-sensor-circuit-and-working/. Accessed 14 Sep 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Renumadhavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Renumadhavi, C.H. et al. (2020). Microcontroller-Based Detection of Diabetes and Ketosis State Using Breath Sensors. In: Jain, S., Paul, S. (eds) Recent Trends in Image and Signal Processing in Computer Vision. Advances in Intelligent Systems and Computing, vol 1124. Springer, Singapore. https://doi.org/10.1007/978-981-15-2740-1_1

Download citation

Publish with us

Policies and ethics