Skip to main content

Global Antibiotics Use and Resistance

  • Chapter
Global Pharmaceutical Policy

Abstract

Antibiotic resistance is a major global threat to public health due to the emergence of multidrug-resistant bacteria. Antibiotic use is one of the main drivers of antimicrobial resistance. It has been demonstrated that there might be a threshold of antibiotic use beyond which resistance would be triggered. A threshold is an estimate of the maximum use of any antibiotic in a population that can be used over a specific period without having resistance to that antibiotic. A policy of use aimed at not exceeding those thresholds for each antibiotic can be established, hoping that problematic resistance would remain at acceptable levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010a;74:417–433.

    Google Scholar 

  • Dar OA, Hasan R, Schlundt J, Harbarth S, Caleo G, Dar FK, Littmann J, Rweyemamu M, Buckley EJ, Shahid M, Kock R, Li HL, Giha H, Khan M, So AD, Bindayna KM, Kessel A, Pedersen HB, Permanand G, Zumla A, Røttingen JA, Heymann DL. Exploring the evidence base for national and regional policy interventions to combat resistance. Lancet. 2016; 387: 285–295

    Google Scholar 

  • Teillant A Gandra S Barter D Morgan DJ Laxminarayan R. Potential burden of antibiotic resistance on surgery and cancer chemotherapy antibiotic prophylaxis in the USA: a literature review and modelling study. Lancet Infect Dis. 2015; 15: 1429–1437

    Google Scholar 

  • de Kraker ME, Davey PG, Grundmann H; BURDEN study group. Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Med. 2011;8(10):e1001104.

    Google Scholar 

  • O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. 2016. Available at: https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf [Last accessed: December 2019].

  • Goossens H Ferech M Vander Stichele R Elseviers M ESAC Project Group. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet. 2005; 365: 579–587

    Google Scholar 

  • Gould IM, Lawes T. Antibiotic stewardship: prescribing social norms. Lancet. 2016; 387:1699–701

    Google Scholar 

  • Charani E, Edwards R, Sevdalis N, Alexandrou B, Sibley E, Mullett D, Franklin BD, Holmes A. Behavior change strategies to influence antimicrobial prescribing in acute care: a systematic review. Clin Infect Dis. 2011; 53: 651–62.

    Google Scholar 

  • Cole A. GPs feel pressurised to prescribe unnecessary antibiotics, survey finds. BMJ. 2014; 349: 5238.

    Google Scholar 

  • Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA, Laxminarayan R. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases 2014; 14(8): 742–750

    Google Scholar 

  • Global action plan on antimicrobial resistance. World Health Organization 2015. Available at: https://apps.who.int/iris/bitstream/handle/10665/193736/9789241509763_eng.pdf?sequence=1 [Last accessed December 2019]

  • WHO report on surveillance of antibiotic consumption: 2016–2018 early implementation. Geneva: World Health Organization; 2018.

    Google Scholar 

  • Sharland M, Gandra S, Huttner B, Moja L, Pulcini C, Zeng M, Mendelson M, Cappello B, Cooke G, Magrini N; EML Expert Committee and Antibiotic Working Group. Encouraging AWaRe-ness and discouraging inappropriate antibiotic use-the new 2019 Essential Medicines List becomes a global antibiotic stewardship tool. Lancet Infect Dis. 2019; 19:1278–1280.

    Google Scholar 

  • Mcgowan JE JR. Antimicrobial resistance in hospital organisms and its relation to antibiotic use. Reviews of Infectious Diseases 1983;5:1033–48.

    Google Scholar 

  • Lipsitch M, Samore MH. Antimicrobial use and antimicrobial resistance: a population perspective. Emerging Infectious Diseases 2002; 8:347–54.

    Google Scholar 

  • Weber SG, Gold HS, Hooper DC, et al. Fluoroquinolones and the risk for methicillin-resistant Staphylococcus aureus in hospitalised patients. Emerging Infectious Diseases 2003;9:1415–22.

    Google Scholar 

  • LeBlanc L, Pepin J, Toulouse K, et al. Fluoroquinolones and risk for methicillin-resistant Staphylococcus aureus, Canada. Emerging Infectious Diseases 2006; 12:1398–405.

    Google Scholar 

  • Mahamat A, MacKenzie FM, Brooker K, et al. Impact of infection control interventions and antibiotic use on hospital MRSA: a multivariate interrupted time-series analysis. International Journal of Antimicrobial Agents 2007; 30:169–76.

    Google Scholar 

  • Monnet DL, MacKenzie FM, López-Lozano JM, Beyaert A, Camacho M, Wilson R, Stuart D, Gould IM. Antimicrobial drug use and methicillin-resistant Staphylococcus aureus, Aberdeen, 1996–2000. Emerging Infectious Diseases 2004; 10:1432–41.

    Google Scholar 

  • Aldeyab MA, Monnet DL, López-Lozano JM, Hughes CM, Scott MG, Kearney MP, Magee FA, McElnay JC. Modelling the impact of antibiotic use and infection control practices on the incidence of hospital-acquired methicillin-resistant Staphylococcus aureus: a time-series analysis. J Antimicrob Chemother. 2008; 62:593–600.

    Google Scholar 

  • Baur D, Gladstone BP, Burkert F, Carrara E, Foschi F, Döbele S, Tacconelli E. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: a systematic review and meta-analysis. Lancet Infect Dis. 2017; 17:990–1001.

    Google Scholar 

  • Hoiby N, Jarlov JO, Kemp M, et al. Excretion of ciprofloxacin in sweat and multiresistant Staphylococcus epidermidis. Lancet 1997; 349:167–9.

    Google Scholar 

  • Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nature Medicine 2004;10: S122–129

    Google Scholar 

  • Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews 2010b; 74: 417–433

    Google Scholar 

  • Colodner R, Rock W, Chazan B, Keller N, Guy N, Sakran W, Raz R. Risk factors for the development of extended spectrum beta lactamase producing bacteria in non-hospitalised patients. European Journal of Clinical Microbiology and Infectious Disease 2004, 23: 163–167.

    Google Scholar 

  • Graffunder EM, Preston KE, Evans AM, Venezia RA. Risk factors associated with extended spectrum beta-lactamase producing organisms in a tertiary care hospital. Journal of Antimicrobial Chemotherapy 2005; 56: 139–145.

    Google Scholar 

  • Rawat D, Nair D. Extended spectrum beta lactamase in gram negative bacteria. Journal of Global Infectious Disease 2010; 2: 263–274.

    Google Scholar 

  • Vibet MA, Roux J, Montassier C, Corvec S, Juvin ME, Ngohou C, Lepelletier D, Batard E. Systematic analysis of the relationship between antibiotic use and extended spectrum beta-lactamase resistance in Enterobacteriaceae in a French Hospital: a time series analysis. European Journal of Clinical Microbiology and Infectious Disease 2015; 34: 1957–1963.

    Google Scholar 

  • Kaier K, Frank U, Hagist C, Conrad A, Meyer E. The impact of antimicrobial drug consumption and alcohol based hand rub use on the emergence and spread of extended spectrum β-lactamase-producing strains: a time series analysis. Journal of Antimicrobial Chemotherapy 2009; 63: 609–614.

    Google Scholar 

  • Vernaz N, Huttner B, Muscionico D, Salomon JL, Bonnabry P, Lopez Lozano JM, Beyaert A, Schrenzel J, Harbarth S. Modelling the impact of antibiotic use on antibiotic resistant Escherichia coli using population based data from a large hospital and surrounding community. Journal of Antimicrobial Chemotherapy 2011; 66: 928–935.

    Google Scholar 

  • Aldeyab MA, Harbarth S, Vernaz N, Kearney MP, Scott MG, Darwish Elhajji FW, Aldiab MA, McElnay JC. The impact of antibiotic use on the incidence and resistance pattern of extended spectrum beta-lactamase producing bacteria in primary and secondary healthcare settings. British Journal of Clinical Pharmacology 2012; 74: 171–179.

    Google Scholar 

  • Canton R, Novais A, Valverde A, Machado E, Peixe L, Baquero F, Coque TM. Prevalence and spread of extended spectrum β lactamase producing Enterobacteriaceae in Europe. Clinical Microbiology and Infection 2008; 14(Suppl 1): 144–153.

    Google Scholar 

  • Pitout JDD, Laupland KB. Extended Spectrum β-lactamase producing Enterobacteriaceae an emerging public health concern. Lancet Infectious Diseases 2008; 8:159166.

    Google Scholar 

  • Hecker MT, Aron DC, Patel NP, Lehmann MK, Donskey CJ. Unnecessary use of antimicrobials in hospitalized patients: current patterns of misuse with an emphasis on the antianaerobic spectrum of activity. Arch Intern Med 2003; 163:972–8.

    Google Scholar 

  • Gould IM. Antibiotic policies to control hospital-acquired infection. J Antimicrob Chemother 2008; 61:763–5

    Google Scholar 

  • Lipsitch, M. The rise and fall of antimicrobial resistance. TRENDS in Microbiology 2001; 9: 438–444.

    Google Scholar 

  • Marcusson LL, Frimoat-Møller N, Hughes D. Interplay in the selection of fluoroquinolone resistance and bacterial fitness. Plos Pathogens 2009; 8: DOI:https://doi.org/10.1371/journal.ppat.1000541.

  • Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nature Reviews Microbiology 2010; 8: 260–261.

    Google Scholar 

  • Levy SB. Balancing the drug-resistance equation. Trends Microbiol. 1994; 2:341–2.

    Google Scholar 

  • Davey P, Marwick CA, Scott CL, Charani E, McNeil K, Brown E, Gould IM, Ramsay CR, Michie S. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev 2017; 2:CD003543.

    Google Scholar 

  • Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O. Antibiotic resistance-the need for global solutions. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013; 13:1057–98.

    Google Scholar 

  • Cormican M, Vellinga A. Existing classes of antibiotics are probably the best we will ever have. BMJ 2012; 344:e3369.

    Google Scholar 

  • Dellit TH, Owens RC, McGowan JE, Gerding DN, Weinstein RA, Burke JP, et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship. Clin Infect Dis. 2007; 44(2):159–77.

    Google Scholar 

  • Muto CA, Jernigan JA, Ostrowsky BE, et al. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and enterococcus. Infect Control Hosp Epidemiol 2003;24: 362–386.

    Google Scholar 

  • López-Lozano JM et al. Modelling and forecasting antimicrobial resistance and its dynamic relationship to antimicrobial use: a time series analysis. Int J Antimicrob Agents. 2000;14:21–31

    Google Scholar 

  • López-Lozano JM et al. A non-linear time-series analysis approach to identify thresholds in associations between population antibiotic use and rates of resistance. Nat Microbiol. 2019;4:1160–1172

    Google Scholar 

  • Lawes T et al. Effect of a national 4C antibiotic stewardship intervention on the clinical and molecular epidemiology of Clostridium difficile infections in a region of Scotland: a non-linear time-series analysis. Lancet Infect Dis. 2017;17:194–206

    Google Scholar 

  • Lawes T et al. Effects of national antibiotic stewardship and infection control strategies on hospital-associated and community-associated methicillin-resistant Staphylococcus aureus infections across a region of Scotland: a non-linear time-series study. Lancet Infect Dis. 2015a;15:1438–49

    Google Scholar 

  • Lawes T et al. Turning the tide or riding the waves? Impacts of antibiotic stewardship and infection control on MRSA strain dynamics in a Scottish region over 16 years: non-linear time series analysis. BMJ Open. 2015b;5: e006596

    Google Scholar 

Download references

Acknowledgement

This chapter is an extension of an APUA newsletter tribute to Stuart Levy, recently deceased, written by the authors (www.APUA.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoon Aldeyab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s)

About this chapter

Cite this chapter

Aldeyab, M., López-Lozano, JM., Gould, I.M. (2020). Global Antibiotics Use and Resistance. In: Babar, ZUD. (eds) Global Pharmaceutical Policy. Palgrave Macmillan, Singapore. https://doi.org/10.1007/978-981-15-2724-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2724-1_13

  • Publisher Name: Palgrave Macmillan, Singapore

  • Print ISBN: 978-981-15-2723-4

  • Online ISBN: 978-981-15-2724-1

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics