Skip to main content

Microbial Remediation for Wastewater Treatment

  • Chapter
  • First Online:
Microbial Technology for Health and Environment

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 22))

Abstract

Discharging of industrial effluents directly into water bodies is a global concern for aquatic and terrestrial biota. Various methods like physical and chemical have been implemented so far, but these existing technologies are sometimes restricted of either technical or economic constraints or are expensive and unsustainable approaches. Bioremediation offers a promising means to reclaim such contaminated water bodies in an economical and ecofriendly way. It is an emerging technology and uses living organisms to manage or remediate polluted soils or wastewater. It is defined as the elimination, attenuation, or transformation of polluting or contaminating substances by the use of biological processes. In this book chapter, we will review the potent role of bacterial species to confer remediation of various pollutants in wastewater. Efforts have been made to summarize the new aspects of bioremediation in mitigating the effects of various hazardous contaminants from wastewater and their limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19(3):257–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal SB, Singh A, Sharma RK, Agrawal M (2007) Bioaccumulation of heavy metals in vegetables: a threat to human health. Terr Aquat Environ Toxicol 1(2):13–23

    Google Scholar 

  • Akpor OB, Otohinoyi DA, Olaolu DT, Aderiye BI (2014) Pollutants in wastewater effluents: impacts and remediation processes. Int J Environ Res Earth Sci 3(3):050–059

    Google Scholar 

  • Ali I, Asim M, Khan TA (2012) Low cost adsorbents for the removal of organic pollutants from wastewater. J Environ Manag 113:170–183

    Article  CAS  Google Scholar 

  • Anastasi A, Parato B, Spina F, Tigini V, Prigione V, Varese GC (2011) Decolourisation and detoxification in the fungal treatment of textile wastewaters from dyeing processes. New Biotechnol 29(1):38–45

    Article  CAS  Google Scholar 

  • Andualema B, Gessesse A (2012) Microbial lipases and their industrial applications. Biotechnology 11(3):100–118

    Article  CAS  Google Scholar 

  • Ayangbenro A, Babalola O (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94

    Article  PubMed Central  CAS  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balakrishnan H, Velu R (2015) Eco-friendly technologies for heavy metal remediation: pragmatic approaches. In: Environmental sustainability. Springer, New Delhi, pp 205–215

    Google Scholar 

  • Bansal A, Shinde O, Sarkar S (2018) Industrial wastewater treatment using phycoremediation technologies and co-production of value-added products. J Bioremed Biodegr 9(428):2

    Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  CAS  Google Scholar 

  • Bazrafshan E, Mohammadi L, Ansari-Moghaddam A, Mahvi AH (2015) Heavy metals removal from aqueous environments by electrocoagulation process–a systematic review. J Environ Health Sci Eng 13(1):74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beena AK, Geevarghese PI (2010) A solvent tolerant thermostable protease from a psychrotrophic isolate obtained from pasteurized milk. Developm Microbiol Molecul Biol 1:113–119

    Google Scholar 

  • Bhat UN, Khan AB (2011) Heavy metals: an ambiguous category of inorganic contaminants, nutrients and toxins. Res J Environ Sci 5(8):682–690

    Article  Google Scholar 

  • Böhmer U, Kirsten C, Bley T, Noack M (2010) White-rot fungi combined with lignite granules and lignitic xylite to decolorize textile industry wastewater. Eng Life Sci 10(1):26–34

    Article  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74(1):63–67

    Article  CAS  Google Scholar 

  • Cardona S, Suarez E (2010) Biodegradation pathway prediction of POPs (Persistent Organic Pollutants) and biobarrier treatment. Dyna 77(163):115–123

    Google Scholar 

  • Cashman D, Foster C, McCluskey K, Zhang Y (2014) Identifying Opportunities to Reduce Water Pollution and Encourage Voluntary Compliance in Windhoek, Namibia. Undergraduate Interactive Qualifying Project No. E-project-050814-051919). Retrieved from Worcester Polytechnic Institute Electronic Projects Collection: http://www.wpi.edu/Pubs/E-project/Available/E-project-050814-051919/unrestricted/City_-_Final_IQP_Report.pdf

  • Chen Y, Patel NA, Crombie A, Scrivens JH, Murrell JC (2011) Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase. Proc Natl Acad Sci 108(43):17791–17796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:752708

    Article  CAS  Google Scholar 

  • Chowdhury S, Bala NN, Dhauria P (2012) Bioremediation–a natural way for cleaner environment. Int J Pharmaceut Chem Biol Sci 2(4):600–611

    Google Scholar 

  • de Lourdes Moreno M, Pérez D, García MT, Mellado E (2013) Halophilic bacteria as a source of novel hydrolytic enzymes. Lifestyles 3(1):38–51

    Google Scholar 

  • Dhall P, Kumar R, Kumar A (2012) Biodegradation of sewage wastewater using autochthonous bacteria. Sci World J 2012:861903

    Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh U, Sahu A, Shukla R, Singh B, Rai J, Sharma P, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustain For 7(2):2189–2212

    Article  CAS  Google Scholar 

  • Dsikowitzky L, Schwarzbauer J (2013) Organic contaminants from industrial wastewaters: identification, toxicity and fate in the environment. In: Pollutant diseases, remediation and recycling. Springer, Cham, pp 45–101

    Chapter  Google Scholar 

  • El-Borai AM, Eltayeb KM, Mostafa AR, El-Assar SA (2016) Biodegradation of industrial oil-polluted wastewater in Egypt by bacterial consortium immobilized in different types of carriers. Pol J Environ Stud 25(5):1901–1909

    Article  CAS  Google Scholar 

  • Florescu D, Ionete RE, Sandru C, Iordache A, Culea M (2010) The influence of pollution monitoring parameters in characterizing the surface water quality from Romania southern area. Rom J Physiol 56:1001–1010

    Google Scholar 

  • Genuis SJ, Kelln KL (2015) Toxicant exposure and bioaccumulation: a common and potentially reversible cause of cognitive dysfunction and dementia. Behav Neurol 2015:620143

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanchang SHI (2009) Industrial wastewater-types, amounts and effects. In: Point sources of pollution: local effects and their control, vol 2. EOLSS Publications, Paris, p 191

    Google Scholar 

  • Hesnawi R, Dahmani K, Al-Swayah A, Mohamed S, Mohammed SA (2014) Biodegradation of municipal wastewater with local and commercial bacteria. Procedia Eng 70:810–814

    Article  CAS  Google Scholar 

  • Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 26(4):201–221

    Article  CAS  PubMed  Google Scholar 

  • Husain Q (2010) Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. Rev Environ Sci Biotechnol 9(2):117–140

    Article  CAS  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jan A, Azam M, Siddiqui K, Ali A, Choi I, Haq Q (2015) Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci 16(12):29592–29630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jecu L, Gheorghe A, Popea F, Rosu A, Stoica A, Stroescu M (2008) Potential of microbial species in biodegradation of volatile organic compounds from waters

    Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Biodegradation-life of science. InTech, London

    Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzym Res 2011:805187

    Article  CAS  Google Scholar 

  • Kaur P, Singh S, Kumar V, Singh N, Singh J (2018) Effect of rhizobacteria on arsenic uptake by macrophyte Eichhornia crassipes (Mart.) Solms. Int J Phytoremediation 20(2):114–120

    Article  CAS  PubMed  Google Scholar 

  • Kavitha RV, Murthy VK, Makam R, Asith KA (2012) Physico-chemical analysis of effluents from pharmaceutical industry and its efficiency study. Int J Eng Res Appl 2(2):103–110

    Google Scholar 

  • Khouni I, Marrot B, Amar RB (2012) Treatment of reconstituted textile wastewater containing a reactive dye in an aerobic sequencing batch reactor using a novel bacterial consortium. Sep Purif Technol 87:110–119

    Article  CAS  Google Scholar 

  • Kumar L, Awasthi G, Singh B (2011) Extremophiles: a novel source of industrially important enzymes. Biotechnology 10(2):121–135

    Article  CAS  Google Scholar 

  • Kumar V, Upadhyay N, Singh S, Singh J, Kaur P (2013) Thin-layer chromatography: comparative estimation of soil’s atrazine. Curr World Environ 8(3):469–472

    Article  CAS  Google Scholar 

  • Kumar V, Upadhyay N, Kumar V, Kaur S, Singh J, Singh S, Datta S (2014a) Environmental exposure and health risks of the insecticide monocrotophos—a review. J Biodivers Environ Sci 5:111–120

    Google Scholar 

  • Kumar V, Singh S, Manhas A, Singh J, Singla S, Kaur P (2014b) Bioremediation of petroleum hydrocarbon by using Pseudomonas species isolated from petroleum contaminated soil. Orient J Chem 30(4):1771–1776

    Article  CAS  Google Scholar 

  • Kumar V, Singh S, Kashyap N, Singla S, Bhadrecha P, Kaur P (2015a) Bioremediation of heavy metals by employing resistant microbial isolates from agricultural soil irrigated with industrial waste water. Orient J Chem 31(1):357–361

    Article  Google Scholar 

  • Kumar V, Singh S, Singh J, Upadhyay N (2015b) Potential of plant growth promoting traits by bacteria isolated from heavy metal contaminated soils. Bull Environ Contam Toxicol 94:807–815

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Kaur S, Singh S, Upadhyay N (2016) Unexpected formation of N′-phenyl-thiophosphorohydrazidic acid O, S-dimethyl ester from acephate: chemical, biotechnical and computational study. 3 Biotech 6(1):1

    Article  PubMed  Google Scholar 

  • Kumar V, Singh S, Singh R, Upadhyay N, Singh J (2017) Design, synthesis, and characterization of 2, 2-bis (2, 4-dinitrophenyl)-2-(phosphonatomethylamino) acetate as a herbicidal and biological active agent. J Chem Biol 10(4):179–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11(3):843–872

    Article  CAS  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Gupta A, Kaur P, Singh S, Singh N, Gehlot P, Singh J (2016) Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils. Int J Phytoremediation 18(7):697–703

    Article  CAS  PubMed  Google Scholar 

  • Mtshali JS, Tiruneh AT, Fadiran AO (2014) Characterization of sewage sludge generated from wastewater treatment plants in Swaziland in relation to agricultural uses. Resour Environ 4(4):190–199

    Google Scholar 

  • Nagwekar PR (2014) Removal of organic matter from wastewater by activated sludge process-review. Int J Sci Eng Technol Res 3(5):1260–1263

    Google Scholar 

  • Naidoo S, Olaniran A (2014) Treated wastewater effluent as a source of microbial pollution of surface water resources. Int J Environ Res Public Health 11(1):249–270

    Article  CAS  Google Scholar 

  • Naruka K (2012) Impact of municipal solid waste on environment and human health. Bioherald: Int J of Biodiv Environ 2(1):25–30

    Google Scholar 

  • Ogbonna DN, Igbenijie M, Isirimah NO (2006) Studies on the inorganic chemicals and microbial contaminants of health importance in groundwater resources in Port Harcourt Rivers State Nigeria. J Appl Sci 6:2257–2262

    Article  CAS  Google Scholar 

  • Ojuederie O, Babalola O (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504

    Article  PubMed Central  CAS  Google Scholar 

  • Oller I, Malato S, Sánchez-Pérez J (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166

    Article  CAS  PubMed  Google Scholar 

  • Othman N, Juki MI, Hussain N, Talib SA (2011) Bioremediation a potential approach for soil contaminated with polycyclic aromatic hydrocarbons: an overview. Int J Sust Construct Eng Technol 2:2

    Google Scholar 

  • Prasad MP, Manjunath K (2011) Comparative study on biodegradation of lipid-rich wastewater using lipase producing bacterial species. Indian J Biotechnol 10:121–124

    CAS  Google Scholar 

  • Praveen PK, Ganguly S, Wakchaure R, Para PA, Mahajan T, Qadri K, Kamble S, Sharma R, Shekhar S, Dalai N (2016) Water-borne diseases and its effect on domestic animals and human health: a review. Int J Emerg Technol Adv Eng 6(1):242–245

    Google Scholar 

  • Quintana JB, Weiss S, Reemtsma T (2005) Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Res 39(12):2654–2664

    Article  CAS  PubMed  Google Scholar 

  • Ratnakar A, Shankar S, Shikha (2016) An overview of biodegradation of organic pollutants. Int J Scientif Innovat Res 4(1):73–91

    Google Scholar 

  • Sabir S (2015) Approach of cost-effective adsorbents for oil removal from oily water. Crit Rev Environ Sci Technol 45(17):1916–1945

    Article  CAS  Google Scholar 

  • Shareef A, Kookana R, Kumar A, Tjandraatmadja G (2008) Sources of emerging organic contaminants in domestic wastewater. An assessment based on literature review. Water for a Healty Country National Research Flagship

    Google Scholar 

  • Sharifuzzaman SM, Rahman H, Ashekuzzaman SM, Islam MM, Chowdhury SR, Hossain MS (2016) Heavy metals accumulation in coastal sediments. In: Environmental remediation technologies for metal-contaminated soils. Springer, Tokyo, pp 21–42

    Chapter  Google Scholar 

  • Sharma D, Sharma B, Shukla AK (2011) Biotechnological approach of microbial lipase: a review. Biotechnology 10(1):23–40

    Article  CAS  Google Scholar 

  • Shon HK, Vigneswaran S, Snyder SA (2006) Effluent organic matter (EfOM) in wastewater: constituents, effects, and treatment. Crit Rev Environ Sci Technol 36(4):327–374

    Article  CAS  Google Scholar 

  • Silva-Bedoya LM, Sánchez-Pinzón MS, Cadavid-Restrepo GE, Moreno-Herrera CX (2016) Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms. Microbiol Res 192:313–325

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharm 43(3):246

    Article  CAS  Google Scholar 

  • Singh A, Kumar V, Srivastava JN (2013) Assessment of bioremediation of oil and phenol contents in refinery waste water via bacterial consortium. J Petroleum J Environ Biotechnol 4(2):145

    Google Scholar 

  • Singh S, Singh N, Kumar V, Datta S, Wani AB, Singh D, Singh J (2016) Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ Chem Lett 14:317–329

    Article  CAS  Google Scholar 

  • Singh S, Kumar V, Upadhyay N, Singh J, Singla S, Datta S (2017) Efficient biodegradation of acephate by Pseudomonas pseudoalcaligenes PS-5 in the presence and absence of heavy metal ions [Cu(II) and Fe(III)], and humic acid. 3 Biotech 7(4):262. https://doi.org/10.1007/s13205-017-0900-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S, Kumar V, Chauhan A, Datta S, Wani AB, Singh N, Singh J (2018) Toxicity, degradation and analysis of the herbicide atrazine. Environ Chem Lett 16:211–237

    Article  CAS  Google Scholar 

  • Sivaprakasam S, Dhandapani B, Mahadevan S (2011) Optimization studies on production of a salt-tolerant protease from Pseudomonas aeruginosa strain BC1 and its application on tannery saline wastewater treatment. Braz J Microbiol 42(4):1506–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tangahu BV, Abdullah S, Rozaimah S, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:939161

    Article  Google Scholar 

  • Tigini V, Prigione V, Giansanti P, Mangiavillano A, Pannocchia A, Varese GC (2010) Fungal biosorption, an innovative treatment for the decolourisation and detoxification of textile effluents. Water 2(3):550–565

    Article  CAS  Google Scholar 

  • Van Leeuwen J, Sridhar A, Harrata AK, Esplugas M, Onuki S, Cai L, Koziel JA (2009) Improving the biodegradation of organic pollutants with ozonation during biological wastewater treatment. Ozone Sci Eng 31(2):63–70

    Article  CAS  Google Scholar 

  • Wang Q, Yang Z (2016) Industrial water pollution, water environment treatment, and health risks in China. Environ Pollut 218:358–365

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zhang Q, Jiang L, Hou Z (2018) The organic pollutant characteristics of lurgi coal gasification wastewater before and after ozonation. J Chemother 2018:1461673

    Google Scholar 

  • Westerhoff P, Lee S, Yang Y, Gordon GW, Hristovski K, Halden RU, Herckes P (2015) Characterization, recovery opportunities, and valuation of metals in municipal sludges from US wastewater treatment plants nationwide. Environ Sci Technol 49(16):9479–9488

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Wang G, Wu J, Fu Q, Liu C (2014) Sources of heavy metals in surface sediments and an ecological risk assessment from two adjacent plateau reservoirs. PLoS One 9(7):e102101

    Article  PubMed  PubMed Central  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011:402647

    Article  Google Scholar 

  • Wyasu G, Kure OA (2012) Determination of organic pollutants in hospital wastewater and food samples within Ahmadu Bello University Teaching Hospital (Abuth), Shika, Zaria-Nigeria. Adv Appl Sci Res 3(3):1691–1701

    CAS  Google Scholar 

  • Yagi JM, Madsen EL (2009) Diversity, abundance, and consistency of microbial oxygenase expression and biodegradation in a shallow contaminated aquifer. Appl Environ Microbiol 75(20):6478–6487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yavari S, Malakahmad A, Sapari NB (2015) A review on phytoremediation of crude oil spills. Water Air Soil Pollut 226(8):279

    Article  CAS  Google Scholar 

  • Yu Y, Wang YC, Zhou HD, Gao B, Zhao GF (2013) Biomagnification of heavy metals in the aquatic food chain in Daning River of the Three Gorges Reservoir during initial impoundment. Huan jing ke xue 34(10):3847–3853

    PubMed  Google Scholar 

  • Zheng C, Zhao L, Zhou X, Fu Z, Li A (2013) Treatment technologies for organic wastewater. In: Water treatment. Intech, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joginder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S. et al. (2020). Microbial Remediation for Wastewater Treatment. In: Arora, P. (eds) Microbial Technology for Health and Environment. Microorganisms for Sustainability, vol 22. Springer, Singapore. https://doi.org/10.1007/978-981-15-2679-4_3

Download citation

Publish with us

Policies and ethics