Skip to main content

Potential of Thallophytes in Degradation of Dyes in Industrial Effluents

  • Chapter
  • First Online:
Microbial Technology for Health and Environment

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 22))

  • 518 Accesses

Abstract

Diverse groups of microorganisms have inhabited this earth, which use different types of sources for energy and growth. Industries revolutionize the lifestyle of humankind, which affects negatively the ecosystem. Synthetic dyes impart fabulous colors to cloth, food, paper, and cosmetics. Due to their xenobiotic nature, they are mostly insurmountable for degradation and also toxic. Most of them are washed off during the various processes and mixed in the industrial effluents. Microorganisms have enzymatic system for the decolorization of dyes or simply they can adsorb them on their surface. Several genera of algae, bacteria, and fungi have developed a system to use these unwanted compounds in the water. They can also biotransform or degrade them into non-toxic products. Degradation of the dyes depends upon their toxicity and chemical structure and the type of strain used. Some species were found to be efficient against a variety of dyes at a high concentration level. The present review describes the diversity of three genera Chlorella, Pseudomonas, and Aspergillus of thallophytes for the degradation and decolorization of various dyes in industrial effluents and also the use of integrated approach of different consortia or other treatments for their application in wastewater treatment plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Rahim WM, Moawad H, Abdel Azeiz AZ et al (2017) Optimization of conditions for decolorization of azo-based textile dyes by multiple fungal species. J Biotechnol 260:11–17

    Article  CAS  PubMed  Google Scholar 

  • Abdallah R, Taha S (2012) Biosorption of methylene blue from aqueous solution by nonviable Aspergillus fumigatus. Chem Eng J 195-196:69–76

    Article  CAS  Google Scholar 

  • Abdel Ghany TM, Al Abboud MA (2014) Capacity of growing, live and dead fungal biomass for safranin dye decolourization and their impact on fungal metabolites. Aus J Basic Appl Sci 8:489–499

    Google Scholar 

  • Acuner E, Dilek F (2004) Treatment of tectilon yellow 2G by Chlorella vulgaris. Process Biochem 39:623–631

    Article  CAS  Google Scholar 

  • Adedayo O, Javadpour S, Taylor C et al (2004) Decolourization and detoxification of methyl red by aerobic bacteria from a wastewater treatment plant. World J Microbiol Biotechnol 20:545–550

    Article  CAS  Google Scholar 

  • Afzal Khan S, Hamayun M, Ahmed S (2006) Degradation of 4-aminophenol by newly isolated Pseudomonas sp. strain ST-4. Enzym Microb Technol 38:10–13

    Article  CAS  Google Scholar 

  • Akar ST, Akar T, Cabu A (2009) Decolorization of a textile dye, RR198 by Aspergillus parasiticus fungal biosorbent. J Chem Eng 2:399–405

    Google Scholar 

  • Aksu Z, Karabayır G (2008) Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan Black RL metal-complex dye. Bioresour Technol 99:7730–7741

    Article  CAS  PubMed  Google Scholar 

  • Aksu Z, Tezer S (2005) Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochem 40:1347–1361

    Article  CAS  Google Scholar 

  • Ali NF, El-Mohamedy RSR (2012) Microbial decolourization of textile waste water. J Saudi Chem Soc 16(2):117–123

    Article  CAS  Google Scholar 

  • Ali N, Hameed A, Ahmed S, Khan AG (2007a) Decolorization of structurally different textile dyes by Aspergillus niger SA1. World J Microbiol Biotechnol 24(7):1067–1072

    Article  CAS  Google Scholar 

  • Ali N, Ikramullah, Lutfullah G et al (2007b) Decolorization of acid red 151 by Aspergillus niger SA1 under different physicochemical conditions. World J Microbiol Biotechnol 24:1099–1105

    Article  CAS  Google Scholar 

  • Ali N, Hameed A, Ahmed S (2010) Role of brown-rot fungi in the bioremoval of azo dyes under different conditions. J Microbiol 4:907–915

    Google Scholar 

  • Almeida EJR, Corso CR (2014) Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus. Chemosphere 112:317–322

    Article  CAS  PubMed  Google Scholar 

  • Álvarez MS, Rodríguez A, Sanromán MÁ et al (2015) Simultaneous biotreatment of polycyclic aromatic hydrocarbons and dyes in a one-step bioreaction by an acclimated Pseudomonas strain. Bioresour Technol 198:181–188

    Article  CAS  PubMed  Google Scholar 

  • Ameen F, Alshehrei F (2017) Biodegradation optimization and metabolite elucidation of Reactive Red 120 by four different Aspergillus species isolated from soil contaminated with industrial effluent. Ann Microbiol 67:303–312

    Article  CAS  Google Scholar 

  • Anastasi A, Prigione V, Casieri L et al (2009) Decolourisation of model and industrial dyes by mitosporic fungi in different culture conditions. World J Microbiol Biotechnol 25:1363–1374

    Article  CAS  Google Scholar 

  • Andleeb S, Atiq N, Robson GD, Ahmed S (2012) An investigation of anthraquinone dye biodegradation by immobilized Aspergillus flavus in fluidized bed bioreactor. Environ Sci Pollut Res 19(5):1728–1737

    Article  CAS  Google Scholar 

  • Arunarani A, Chandran P, Ranganathan BV et al (2013) Bioremoval of basic violet 3 and Acid Blue 93 by Pseudomonas putida and its adsorption isotherms and kinetics. Colloids Surf B: Biointerfaces 102:379–384

    Article  CAS  PubMed  Google Scholar 

  • Asgher M (2012) Biosorption of reactive dyes: a review. Water Air Soil Pollut 223:2417. https://doi.org/10.1007/s11270-011-1034-z

    Article  CAS  Google Scholar 

  • Banat IM, Nigam P, McMullan G et al (1997) The isolation of thermophilic bacterial cultures capable of textile dyes decolorization. Environ Int 23:547–551

    Article  Google Scholar 

  • Ben Mansour H, Corroler D, Barillier D et al (2007) Evaluation of genotoxicity and pro-oxidant effect of the azo dyes: acids yellow 17, violet 7 and orange 52, and of their degradation products by Pseudomonas putida mt-2. Food Chem Toxicol 45:1670–1677

    Article  CAS  PubMed  Google Scholar 

  • Ben Mansour H, Corroler D, Barillier D et al (2009a) Influence of the chemical structure on the biodegradability of acids yellow 17, violet 7 and orange 52 by Pseudomonas putida. Ann Microbiol 59:9–15

    Article  CAS  Google Scholar 

  • Ben Mansour H, Mosrati R, Corroler D et al (2009b) In vitro mutagenicity of Acid Violet 7 and its degradation products by Pseudomonas putida mt-2: correlation with chemical structures. Environ Toxicol Pharmacol 27:231–236

    Article  CAS  PubMed  Google Scholar 

  • Benghazi L, Record E, Suárez A, Gomez-Vidal JA, Martínez J, de la Rubia T (2013) Production of the Phanerochaete flavido-alba laccase in Aspergillus niger for synthetic dyes decolorization and biotransformation. World J Microbiol Biotechnol 30(1):201–211

    Article  CAS  PubMed  Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bidisha C, Sreeranjani R, Shaik A et al (2006) Bioaccumulation and biosorption of drimarene red dye by Aspergillus foetidus. Int J Environ Pollut 28:517–533

    Article  CAS  Google Scholar 

  • Bouras HD, Yeddou AR, Bouras N (2017) Biosorption of Congo red dye by Aspergillus carbonarius M333 and Penicillium glabrum Pg1: kinetics, equilibrium and thermodynamic studies. J Taiwan Inst Chem E 80:915–923

    Article  CAS  Google Scholar 

  • Bumpus JA (1995) Microbial degradation of azo dyes. In: Singh VP (ed) Biotransformations: microbial degradation of health risk compounds. Elsevier Science, Amsterdam, pp 157–176

    Chapter  Google Scholar 

  • Bumpus JA, Aust SD (1987) Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysosporium: involvement of the lignin degrading system. Bio Essays 6:166–170

    CAS  Google Scholar 

  • Carmen Z, Daniel S (2012) Textile organic dyes—characteristics, polluting effects and separation/elimination procedures from industrial effluents—a critical overview, organic pollutants ten years after the Stockholm convention, Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng, IntechOpen, doi: 10.5772/32373. Available from: https://www.intechopen.com/books/organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update/textile-organic-dyes-characteristics-polluting-effects-and-separation-elimination-procedures-from-in

  • Chang JS, Chou C, Chen SY (2001a) Decolorization of azo dyes with immobilized Pseudomonas luteola. Process Biochem 36:757–763

    Article  CAS  Google Scholar 

  • Chang JS, Chou C, Lin YC et al (2001b) Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Res 35:2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Chao WL, Lee SL (1994) Decoloration of azo dyes by three white rot fungi: influence of carbon source. World J Microbiol Biotechnol 10:556–559

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi V, Bhange K, Bhatt R et al (2013) Biodetoxification of high amounts of malachite green by a multifunctional strain of Pseudomonas mendocina and its ability to metabolize dye adsorbed chicken feathers. J Environ Chem Eng 1:1205–1213

    Article  CAS  Google Scholar 

  • Chen BY (2002) Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics. Process Biochem 38:437–446

    Article  CAS  Google Scholar 

  • Chen BY (2006) Toxicity assessment of aromatic amines to Pseudomonas luteola: chemostat pulse technique and dose–response analysis. Process Biochem 41:1529–1538

    Article  CAS  Google Scholar 

  • Chen JP, Lin YS (2007) Decolorization of azo dye by immobilized Pseudomonas luteola entrapped in alginate–silicate sol–gel beads. Process Biochem 42:934–942

    Article  CAS  Google Scholar 

  • Chen H, Hopper SL, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH—dependent flavoprotein. Microbiology 151:1433–1441

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Liao HJ, Cheng CY et al (2007) Biodegradation of Crystal Violet by Pseudomonas putida. Biotechnol Lett 29:391–396

    Article  CAS  PubMed  Google Scholar 

  • Chivukula M, Renganathan V (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61:4374–4377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu WL, See YC, Phang SM (2009) Use of immobilised Chlorella vulgaris for the removal of colour from textile dyes. J Appl Phycol 21:641. https://doi.org/10.1007/s10811-008-9396-3

    Article  CAS  Google Scholar 

  • Conatao M, Corso CR (1996) Studies of adsorptive interaction between Aspergillus niger and the reactive azo dye procion blue MX-G. Ecletica Quim 21:97–102

    Google Scholar 

  • Copete-Pertuz LS, Alandete-Novoa F, al PJ (2019) Enhancement of ligninolytic enzymes production and decolourising activity in Leptosphaerulina sp. by co–cultivation with Trichoderma viride and Aspergillus terreus. Sci Total Environ 646:1536–1545

    Article  CAS  PubMed  Google Scholar 

  • Coughlin MF, Kinkle BK, Bishop PL (2003) High performance degradation of azo dye acid orange 7 and sulfanilic acid in a laboratory scale reactor after seeding with cultured bacterial strains. Water Res 37:2757–2763

    Article  CAS  PubMed  Google Scholar 

  • Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1114–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daneshvar N, Khataee AR, Rasoulifard MH et al (2007) Biodegradation of dye solution containing malachite green: optimization of effective parameters using Taguchi method. J Hazard Mater 143:214–219

    Article  CAS  PubMed  Google Scholar 

  • Daneshvar E, Antikainen L, Koutra E et al (2018) Investigation on the feasibility of Chlorella vulgaris cultivation in a mixture of pulp and aquaculture effluents: treatment of wastewater and lipid extraction. Bioresour Technol 255:104–110

    Article  CAS  PubMed  Google Scholar 

  • de Andrade CJ, de Andrade LM (2017) An overview on the application of genus Chlorella in biotechnological processes

    Google Scholar 

  • Deepa K, Chandran P, Sudheer Khan S (2013) Bioremoval of Direct Red from aqueous solution by Pseudomonas putida and its adsorption isotherms and kinetics. Ecol Eng 58:207–213

    Article  Google Scholar 

  • Deng S, Yu G, Ting YP (2005) Production of a bioflocculant by Aspergillus parasiticus and its application in dye removal. Colloids Surf B: Biointerfaces 44:179–186

    Article  CAS  PubMed  Google Scholar 

  • Dilek FB, Taplamacioglu HM, Tarlan E (1999) Colour and AOX removal from pulping effluents by algae. Appl Microbiol Biotechnol 52:585–591

    Article  CAS  Google Scholar 

  • Du LN, Yang YY, Li G et al (2010) Optimization of heavy metal-containing dye Acid Black 172 decolorization by Pseudomonas sp. DY1 using statistical designs. Int Biodeterior Biodegrad 64:566–573

    Article  CAS  Google Scholar 

  • Du LN, Wang B, Li G et al (2012) Biosorption of the metal-complex dye Acid Black 172 by live and heat-treated biomass of Pseudomonas sp. strain DY1: kinetics and sorption mechanisms. J Hazard Mater 205-206:47–54

    Article  CAS  PubMed  Google Scholar 

  • El-Kassas HY, Mohamed LA (2014) Bioremediation of the textile waste effluent by Chlorella vulgaris. Egypt J Aquat Res 40:301–308

    Article  Google Scholar 

  • El-Naggar MA, El-Aasar SA, Barakat KI (2004) Bioremediation of crystal violet using air bubble bioreactor packed with Pseudomonas aeruginosa. Water Res 38:4313–4322

    Article  CAS  PubMed  Google Scholar 

  • El-Sheekh MM, Gharieb MM, Abou-El-Souod GW (2009) Biodegradation of dyes by some green algae and cyanobacteria. Int Biodeterior Biodegradation 63:699–704

    Article  CAS  Google Scholar 

  • Esmaeili A, Kalantari M (2011) Bioremoval of an azo textile dye, Reactive Red 198, by Aspergillus flavus. World J Microbiol Biotechnol 28:1125–1131

    Article  CAS  PubMed  Google Scholar 

  • Fazal T, Mushtaq A, Rehman F et al (2018) Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renew Sustain Energy Rev 82:3107–3126

    Article  CAS  Google Scholar 

  • Fu YZ, Viraraghavan T (2000) Removal of a dye from aqueous solution by the fungus Aspergillus niger. Water Qual Res J Can 35:95–111

    Article  CAS  Google Scholar 

  • Fu Y, Viraraghavan T (2002a) Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Adv Environ Res 7:239–247

    Article  CAS  Google Scholar 

  • Fu Y, Viraraghavan T (2002b) Dye biosorption sites in Aspergillus niger. Bioresour Technol 82:139–145

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Viraraghavan T (2003) Column studies for biosorption of dyes from aqueous solutions on immobilized Aspergillus niger fungal biomass. Water South Africa 29:465–472

    Google Scholar 

  • Gao QT, Wong YS, Tam NFY (2011) Removal and biodegradation of nonylphenol by immobilized Chlorella vulgaris. Bioresour Technol 102:10230–10238

    Article  CAS  PubMed  Google Scholar 

  • Godheja J, Shekhar SK, Siddiqui SA et al (2016) Xenobiotic compounds present in soil and water: a review on remediation strategies. J Environ Anal Toxicol 6:5. https://doi.org/10.4172/2161-0525.1000392

    Article  Google Scholar 

  • Gomaa OM, Momtaz OA, Kareem HAE et al (2011) Isolation, identification, and biochemical characterization of a brown rot fungus capable of textile dye decolorization. World J Microbiol Biotechnol 27:1641–1648

    Article  CAS  Google Scholar 

  • Gomaa OM, Selim NS, Wee J et al (2017) RNA Seq analysis of the role of calcium chloride stress and electron transport in mitochondria for malachite green decolorization by Aspergillus niger. Fungal Genet Biol 105:1–7

    Article  CAS  PubMed  Google Scholar 

  • Gopinath KP, Kathiravan MN, Srinivasan R et al (2011) Evaluation and elimination of inhibitory effects of salts and heavy metal ions on biodegradation of Congo red by Pseudomonas sp. mutant. Bioresour Technol 102:3687–3693

    Article  CAS  PubMed  Google Scholar 

  • Goszczynski S, Paszczynski A, Pasti-Grigsby MB et al (1994) New pathway for degradation of sulfonated azo dyes by microbial peroxidases of by Phanerochaete chrysosporium and Streptomyces chromofuscus. J Bacteriol 176:1339–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafeez F, Farheen H, Mahmood F et al (2018) Isolation and characterization of a lead (Pb) tolerant Pseudomonas aeruginosa strain HF5 for decolorization of reactive red-120 and other azo dyes. Ann Microbiol 68:943–952

    Article  CAS  Google Scholar 

  • Hai FI, Yamamoto K, Fukushi K (2007) Hybrid treatment systems for dye wastewater. Crit Rev Environ Sci Technol 37:315–377

    Article  CAS  Google Scholar 

  • Hanan HO (2008) Algal decolorization and degradation of monoazo and diazo dyes. Pak J Biol Sci 11:1310–1316

    Article  Google Scholar 

  • Hasanin MS, Darwesh OM, Matter IA et al (2019) Isolation and characterization of non-cellulolytic Aspergillus flavus EGYPTA5 exhibiting selective ligninolytic potential. Biocatal Agri Biotechnol 17:160–167

    Article  Google Scholar 

  • Hashem RA, Samir R, Essam TM et al (2018) Optimization and enhancement of textile reactive Remazol black B decolorization and detoxification by environmentally isolated pH tolerant Pseudomonas aeruginosa KY284155. AMB Express 8:83. https://doi.org/10.1186/s13568-018-0616-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Song C, Li Y et al (2018) Efficient degradation of Azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions. Ecotox Environ Safety 150:232–239

    Article  CAS  Google Scholar 

  • Hedayati MT, Pasqualotto AC, Warn PA et al (2007) Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 153:1677–1692

    Article  CAS  PubMed  Google Scholar 

  • Heimann K, Huerlimann R (2015) Microalgal classification: major classes and genera of commercial microalgal species. In: Se-Kwon K (ed) Handbook of marine microalgae: biotechnolgy advances. Academic Press, London, UK, pp 25–41

    Chapter  Google Scholar 

  • Hernández-Zamora M, Perales-Vela HV, Flores-Ortíz CM et al (2014) Physiological and biochemical responses of Chlorella vulgaris to Congo red. Ecotoxicol Environ Saf 108:72–77

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Zamora M, Cristiani-Urbina E, Martínez-Jerónimo F et al (2015) Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris. Environ Sci Pollut Res Int 22:10811–10823

    Article  CAS  PubMed  Google Scholar 

  • Horník M, Šuňovská A, Partelová D et al (2013) Continuous sorption of synthetic dyes on dried biomass of microalga Chlorella pyrenoidosa. Chem Pap 67:254–264

    Article  CAS  Google Scholar 

  • Houbraken J, Samson RA, Yilmaz N (2016) Taxonomy of Aspergillus, Penicillium and Talaromyces and its significance for biotechnology. In de Vries RP, Gelber IB, Andersen MR (eds), Aspergillus and Penicillium in the post-genomic era (pp. 1-16). Caister, UK, Academic Press

    Google Scholar 

  • Hsueh CC, Chen BY (2007) Comparative study on reaction selectivity of azo dye decolorization by Pseudomonas luteola. J Hazard Mater 141:842–849

    Article  CAS  PubMed  Google Scholar 

  • Hsueh CC, Chen BY (2008) Exploring effects of chemical structure on azo dye decolorization characteristics by Pseudomonas luteola. J Hazard Mater 154:703–710

    Article  CAS  PubMed  Google Scholar 

  • Hu TL (1994) Decolourization of reactive azo dyes by transformation of Pseudomonas luteola. Bioresour Technol 49:47–51

    Article  CAS  Google Scholar 

  • Hu TL (1996) Removal of reactive dyes from aqueous solution by different bacterial genera. Water Sci Technol 34:89–95

    CAS  Google Scholar 

  • Hu TL (1998) Degradation of azo dye RP2B by Pseudomonas luteola. Water Sci Technol 38:229–306

    Article  Google Scholar 

  • Huan M, Lian-Tai L, Cai-Fang Y et al (2010) Biodegradation of malachite green by strain Pseudomonas sp. K9 and cloning of the tmr2 gene associated with an ISPpu12. World J Microbiol Biotechnol 27:1323–1329

    Article  CAS  Google Scholar 

  • Huang H, Wu K, Khan A et al (2016a) A novel Pseudomonas gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium. Bioresour Technol 207:370–378

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Liu D, Lu J et al (2016b) Biosorption of reactive black 5 by modified Aspergillus versicolor biomass: kinetics, capacity and mechanism studies. Colloids Surf A Physicochem Eng Aspect 492:242–248

    Article  CAS  Google Scholar 

  • Idaka E, Ogawa T, Horitsu H (1987a) Reductive metabolism of aminoazobenzenes by Pseudomonas cepacia. Bull Environ Contam Toxicol 39:100–107

    Article  CAS  PubMed  Google Scholar 

  • Idaka E, Ogawa T, Horitsu H (1987b) Oxidative pathway after reduction of p-aminoazobenzene by Pseudomonas cepacia. Bull Environ Contam Toxicol 39:108–113

    Article  CAS  PubMed  Google Scholar 

  • Iqbal A, Sabar S, Mun-Yee MK et al (2018) Pseudomonas aeruginosa USM-AR2/SiO 2 biosorbent for the adsorption of methylene blue. J Environ Chem Eng 6:4908–4916

    Article  CAS  Google Scholar 

  • Isaac P, Martínez FL, Bourguignon N et al (2015) Improved PAHs removal performance by a defined bacterial consortium of indigenous Pseudomonas and actinobacteria from Patagonia, Argentina. Int Biodeterior Biodegradation 101:23–31

    Article  CAS  Google Scholar 

  • Işik M, Sponza DT (2003) Effect of oxygen on decolorization of azo dyes by Escherichia coli and Pseudomonas sp. and fate of aromatic amines. Process Biochem 38:1183–1192

    Article  CAS  Google Scholar 

  • Izmalkova TY, Sazonova OI, Nagornih MO, Sokolov SL, Kosheleva IA, Boronin AM (2013) The organization of naphthalene degradation genes in Pseudomonas putida strain AK5. Res Microbiol 164(3):244–253

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Ning Y (2013) Laccase production optimization by response surface methodology with Aspergillus fumigatus AF1 in unique inexpensive medium and decolorization of different dyes with the crude enzyme or fungal pellets. J Hazard Mater 262:870–877

    Article  CAS  PubMed  Google Scholar 

  • Jinqi L, Houtian L (1992) Degradation of azo dyes by algae. Environ Pollut 75:273–278

    Article  CAS  PubMed  Google Scholar 

  • Joe J, Kothari RK, Raval CM, Kothari CR (2011) Decolourization of textile dye Remazol black B by Pseudomonas aeruginosa CR-25 isolated from the common effluent treatment plant. J Bioremed Biodegrade 2:118. https://doi.org/10.4172/2155-6199.1000118

    Article  Google Scholar 

  • Kadam AA, Telke AA, Jagtap SS et al (2011) Decolorization of adsorbed textile dyes by developed consortium of Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 under solid state fermentation. J Hazard Mater 189:486–494

    Article  CAS  PubMed  Google Scholar 

  • Kalme S, Ghodake G, Govindwar S (2007a) Red HE7B degradation using desulfonation by Pseudomonas desmolyticum NCIM 2112. Int Biodeterior Biodegrad 60:327–333

    Article  CAS  Google Scholar 

  • Kalme SD, Parshetti GK, Jadhav SU et al (2007b) Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas desmolyticum NCIM 2112. Bioresour Technol 98:1405–1410

    Article  CAS  PubMed  Google Scholar 

  • Kalme S, Jadhav S, Jadhav M et al (2009) Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112. Enzym Microb Technol 44:65–71

    Article  CAS  Google Scholar 

  • Kalpana VN, Kataru BAS, Sravani N et al (2018a) Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: antimicrobial textiles and dye degradation studies. Open Nano 3:48–55

    Google Scholar 

  • Kalpana VN, Kataru BAS, Sravani N (2018b) Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: antimicrobial textiles and dye degradation studies. OpenNano 3:48–55

    Article  Google Scholar 

  • Kalyani DC, Patil PS, Jadhav JP et al (2008) Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresour Technol 99:4635–4641

    Article  CAS  PubMed  Google Scholar 

  • Kalyani DC, Telke AA, Jadhav JP et al (2009) Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163:735–742

    Article  CAS  PubMed  Google Scholar 

  • Kalyani DC, Phugare SS, Shedbalkar UU et al (2011) Purification and characterization of a bacterial peroxidase from the isolated strain Pseudomonas sp. SUK1 and its application for textile dye decolorization. Ann Microbiol 61:483–491

    Article  CAS  Google Scholar 

  • Kalyani DC, Telke AA, Surwase SN et al (2012) Effectual decolorization and detoxification of triphenylmethane dye malachite green (MG) by Pseudomonas aeruginosa NCIM 2074 and its enzyme system. Clean Techn Environ Policy 14:989–1001

    Article  CAS  Google Scholar 

  • Kang Y, Xu X, Pan H, Tian J, Tang W, Liu S (2017) Decolorization of mordant yellow 1 using. TS-A CGMCC 12964 by biosorption and biodegradation. Bioengineered 9(1):222–232

    Article  CAS  Google Scholar 

  • Kanhere J, Gopinathan R, Banerjee J (2014) Cytotoxicity and genotoxicity of malachite green on non-target aquatic organisms: Chlorella pyrenoidosa and Daphnia magna. Water Air Soil Pollut 225:2134. https://doi.org/10.1007/s11270-014-2134-3

    Article  CAS  Google Scholar 

  • Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng 6:4676–4697

    Article  CAS  Google Scholar 

  • Kaushik P, Malik A (2010) Effect of nutritional conditions on dye removal from textile effluent by Aspergillus lentulus. World J Microbiol Biotechnol 26(11):1957–1964

    Article  CAS  Google Scholar 

  • Kaushik P, Malik A (2011) Process optimization for efficient dye removal by Aspergillus lentulus FJ172995. J Hazard Mater 185(2–3):837–843

    Article  CAS  PubMed  Google Scholar 

  • Keck A, Klein J, Kudlich M et al (1997) Reduction of azo dyes by redox mediators originating in the naphthalene sulfonic acid degradation pathway of Sphingomonas ssp. Strain BN6. Appl Environ Microbiol 63:3684–3690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalaf MA (2008) Biosorption of reactive dye from textile wastewater by non-viable biomass of Aspergillus niger and Spirogyra sp. Bioresour Technol 99:6631–6634

    Article  CAS  PubMed  Google Scholar 

  • Khambhaty Y, Mody K, Basha S (2012) Efficient removal of Brilliant Blue G (BBG) from aqueous solutions by marine Aspergillus wentii: kinetics, equilibrium and process design. Ecol Eng 41:74–83

    Article  Google Scholar 

  • Khan Z, Jain K, Soni A et al (2014) Microaerophilic degradation of sulphonated azo dye- Reactive Red 195 by bacterial consortium AR1 through co-metabolism. Int Biodeterior Biodegradation 94:167–175

    Article  CAS  Google Scholar 

  • Knapp JS, Newby PS (1999) The decolourisation of a chemical industry effluent by white rot fungi. Water Res 33:575–577

    Article  CAS  Google Scholar 

  • Kong J, Wang H, Liang L et al (2017) Phenanthrene degradation by the bacterium Pseudomonas stutzeri JP1 under low oxygen condition. Int Biodeterior Biodegradation 123:121–126

    Article  CAS  Google Scholar 

  • Kousha M, Farhadian O, Dorafshan S et al (2013) Optimization of malachite green biosorption by green microalgae—Scenedesmus quadricauda and Chlorella vulgaris: application of response surface methodology. J Taiwan Inst Chemical E 44:291–294

    Article  CAS  Google Scholar 

  • Kuddus M, Joseph B, Wasudev Ramteke P (2013) Production of laccase from newly isolated Pseudomonas putida and its application in bioremediation of synthetic dyes and industrial effluents. Biocat Agri Biotechnol 2:333–338

    Article  Google Scholar 

  • Kumar Garg S, Tripathi M, Singh SK et al (2012) Biodecolorization of textile dye effluent by Pseudomonas putida SKG-1 (MTCC 10510) under the conditions optimized for monoazo dye orange II color removal in simulated minimal salt medium. Int Biodeterior Biodegrad 74:24–35

    Article  CAS  Google Scholar 

  • Kumar CG, Mongolla P, Sheik AB et al (2011) Decolorization and biotransformation of triphenylmethane dye, methyl violet, by Aspergillus sp. isolated from Ladakh, India. J Microbiol Biotechnol 21:267–273

    CAS  PubMed  Google Scholar 

  • Kumar CG, Mongolla P, Joseph J, Sarma VUM (2012) Decolorization and biodegradation of triphenylmethane dye, brilliant green, by Aspergillus sp. isolated from Ladakh, India. Process Biochem 47(9):1388–1394

    Article  CAS  Google Scholar 

  • Kumar R, Kaur J, Jain S, Kumar A (2016) Optimization of laccase production from Aspergillus flavus by design of experiment technique: partial purification and characterization. J Genet Eng Biotechnol 14(1):125–131

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuppusamy S, Sethurajan M, Kadarkarai M et al (2017) Biodecolourization of textile dyes by novel, indigenous Pseudomonas stutzeri MN1 and Acinetobacter baumannii MN3. J Environ Chem Eng 5:716–724

    Article  CAS  Google Scholar 

  • Lebron YAR, Moreira VR, Santos LVS et al (2018) Remediation of methylene blue from aqueous solution by Chlorella pyrenoidosa and Spirulina maxima biosorption: equilibrium, kinetics, thermodynamics and optimization studies. J Environ Chem Eng 6:6680–6690

    Article  CAS  Google Scholar 

  • Li L, Hong Q, Yan X et al (2009) Isolation of a malachite green-degrading Pseudomonas sp. MDB-1 strain and cloning of the tmr2 gene. Biodegradation 20:769–776

    Article  CAS  PubMed  Google Scholar 

  • Lim SL, Chu WL, Phang SM (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101:7314–7322

    Article  CAS  PubMed  Google Scholar 

  • Lin YH, Leu JY (2008) Kinetics of reactive azo-dye decolorization by Pseudomonas luteola in a biological activated carbon process. Biochem Eng J 39:457–467

    Article  CAS  Google Scholar 

  • Lin SF, Yu P, Lin YM (2004) Study on decolorization of malachite green by a Pseudomonas aeruginosa. J Fujian Norm Univ 20:72–75

    Google Scholar 

  • Lin J, Zhang X, Li Z et al (2010) Biodegradation of Reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. isolate. Bioresour Technol 101:34–40

    Article  CAS  PubMed  Google Scholar 

  • Liu C, You Y, Zhao R et al (2017) Biosurfactant production from Pseudomonas taiwanensis L1011 and its application in accelerating the chemical and biological decolorization of azo dyes. Ecotoxicol Environ Saf 145:8–15

    Article  CAS  PubMed  Google Scholar 

  • Lodato A, Alfieri F, Olivieri G et al (2007) Azo-dye conversion by means of Pseudomonas sp. OX1. Enzym Microb Technol 41:646–652

    Article  CAS  Google Scholar 

  • Logroño W, Pérez M, Urquizo G et al (2017) Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: a preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater. Chemosphere 176:378–388

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Zhang Q, Yao S (2017) Efficient decolorization of dye-containing wastewater using mycelial pellets formed of marine-derived Aspergillus niger. Chin J Chem Eng 25:330–337

    Article  CAS  Google Scholar 

  • Luan TG, Jin J, Chan SMN et al (2006) Biosorption and biodegradation of tributyltin (TBT) by alginate immobilized Chlorella vulgaris beads in several treatment cycles. Process Biochem 41:1560–1565

    Article  CAS  Google Scholar 

  • Mahmoud MS, Mostafa MK, Mohamed SA (2017) Bioremediation of red azo dye from aqueous solutions by Aspergillus niger strain isolated from textile wastewater. J Environ Chem Eng 5:547–554

    Article  CAS  Google Scholar 

  • Malla FA, Khan SA, Rashmi et al (2015) Phycoremediation potential of Chlorella minutissima on primary and tertiary treated wastewater for nutrient removal and biodiesel production. Ecol Eng 75:343–349

    Article  Google Scholar 

  • Mangwani N, Shukla SK, Rao TS (2014) Calcium-mediated modulation of Pseudomonas mendocina NR802 biofilm influences the phenanthrene degradation. Colloids Surf B: Biointerfaces 114:301–309

    Article  CAS  PubMed  Google Scholar 

  • Maqbool Z, Hussain S, Ahmad T et al (2016) Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium. Environ Sci Pollut Res 23:11224–11239

    Article  CAS  Google Scholar 

  • Mathur M, Gola D, Panja R, Malik A, Ahammad SZ (2018) Performance evaluation of two Aspergillus spp. for the decolourization of reactive dyes by bioaccumulation and biosorption. Environ Sci Pollut Res 25(1):345–352

    Article  CAS  Google Scholar 

  • McMullan G, Meehan C, Conneely A et al (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87

    Article  CAS  PubMed  Google Scholar 

  • Michaels GB, Lewis DL (1985) Sorption and toxicity of azo and triphenylmethane dyes to aquatic microbial populations. Environ Toxicol Chem 4:45–50

    Article  CAS  Google Scholar 

  • Mishra S, Maiti A (2018) Optimization of process parameters to enhance the bio-decolorization of Reactive Red 21 by Pseudomonas aeruginosa 23N1. Int J Environ Sci Technol 16:6685–6698. https://doi.org/10.1007/s13762-018-2023-1

    Article  CAS  Google Scholar 

  • Mohan SV, Sistla S, Guru RK et al (2003) Microbial degradation of pyridine using Pseudomonas sp. and isolation of plasmid responsible for degradation. Waste Manag 23:167–171

    Article  CAS  PubMed  Google Scholar 

  • Moharikar A, Purohit HJ (2003) Specific ratio and survival of Pseudomonas CF600 as co-culture for phenol degradation in continuous cultivation. Int Biodeterior Biodegrad 52:255–260

    Article  CAS  Google Scholar 

  • Munoza R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  CAS  Google Scholar 

  • Muthu Kumara Pandian A, Karthikeyan C, Rajasimman M (2016) Isotherm and kinetic studies on nano-sorption of malachite green onto Aspergillus flavus mediated synthesis of silver nano particles. Environ Nanotechnol Monitor Manag 6:139–151

    Article  Google Scholar 

  • Nachiyar CV, Rajkumar GS (2003) Degradation of a tannery and textile dye, Navitan Fast Blue S5R by Pseudomonas aeruginosa. World J Microbiol Biotechnol 19:609–614

    Article  CAS  Google Scholar 

  • Nachiyar CV, Rajkumar GS (2004) Mechanism of Navitan fast Blue S5R degradation by Pseudomonas aeruginosa. Chemosphere 57:165–169

    Article  CAS  Google Scholar 

  • Nachiyar CV, Rajkumar GS (2005) Purification and characterization of an oxygen insensitive azoreductase from Pseudomonas aeruginosa. Enzym Microb Technol 36:503–509

    Article  CAS  Google Scholar 

  • Nachiyar CV, Vijayalakshmi K, Muralidharan D et al (2007) Mineralization of metanilic acid by Pseudomonas aeruginosa CLRI BL22. World J Microbiol Biotechnol 23:1733–1738

    Article  CAS  Google Scholar 

  • Nakanishi M, Yatome C, Ishida N et al (2001) Putative ACP phosphodiesterase gene encodes an azoreductase. J Biol Chem 49:46394–46399

    Article  CAS  Google Scholar 

  • Naraian R, Kumari S, Gautam RL (2018) Biodecolorization of brilliant green carpet industry dye using three distinct Pleurotus spp. Environ Sustain 1:141–148

    Article  Google Scholar 

  • Naskar A, Majumder R (2017) Understanding the adsorption behaviour of acid yellow 99 on Aspergillus niger biomass. J Mol Liq 242:892–899

    Article  CAS  Google Scholar 

  • Nigam P, Banat IM, Singh D et al (1996) Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochem 31:435–442

    Article  CAS  Google Scholar 

  • Ning C, Qingyun L, Aixing T et al (2018) Decolorization of a variety of dyes by Aspergillus flavus A5p1. Bioprocess Biosyst Eng 41:511–518

    Article  CAS  PubMed  Google Scholar 

  • Nitisakulkan T, Oku S, Kudo D et al (2014) Degradation of chloroanilines by toluene dioxygenase from Pseudomonas putida T57. J Biosci Bioeng 117:292–297

    Article  CAS  PubMed  Google Scholar 

  • Nowak A, Mrozik A (2018) Degradation of 4-chlorophenol and microbial diversity in soil inoculated with single Pseudomonas sp. CF600 and Stenotrophomonas maltophilia KB2. J Environ Manag 215:216–229

    Article  CAS  Google Scholar 

  • Nwinyi OC, Ajayi OO, Amund OO (2016) Degradation of polynuclear aromatic hydrocarbons by two strains of Pseudomonas. Braz J Microbiol 47:551–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oranusi NA, Ogugbue CJ (2005) Effect of cosubstrates on primary biodegradation of triphenylmethane dyes by Pseudomonas sp. Afr J Appl Zool Environ Biol 7:38–44

    Google Scholar 

  • Pandey BV, Upadhyay RS (2006) Spectroscopic characterization and identification of Pseudomonas fluorescens mediated metabolic products of Acid Yellow-9. Microbiol Res 161:311–315

    Article  CAS  PubMed  Google Scholar 

  • Pandey RK, Tewari S, Tewari L (2018) Lignolytic mushroom Lenzites elegans WDP2: laccase production, characterization, and bioremediation of synthetic dyes. Ecotox Environ Safety 158:50–58

    Article  CAS  Google Scholar 

  • Park JK, Chang HN (2000) Microencapsulation of microbial cells. Biotechnol Adv 18:303–319

    Article  CAS  PubMed  Google Scholar 

  • Park HS, Jun SC, Han KH et al (2017) Diversity, application, and synthetic biology of industrially important Aspergillus fungi. Adv Appl Microbiol 100:161–202

    Article  PubMed  Google Scholar 

  • Parshetti GK, Kalme SD, Gomare SS (2007) Biodegradation of reactive blue-25 by Aspergillus ochraceus NCIM-1146. J Biotechnol 98:3638–3642

    CAS  Google Scholar 

  • Paszczynski A, Pasti-Grigsby MB, Goszczynski S et al (1992) Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscust. Appl Environ Microbiol 58:3598–3604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel R, Suresh S (2008) Kinetic and equilibrium studies on the biosorption of reactive black 5 dye by Aspergillus foetidus. Bioresour Technol 99:51–58

    Article  CAS  PubMed  Google Scholar 

  • Patel Y, Mehta C, Gupte A (2012) Assessment of biological decolorization and degradation of sulfonated di-azo dye Acid Maroon V by isolated bacterial consortium EDPA. Int Biodeterior Biodegrad 75:187–193

    Article  CAS  Google Scholar 

  • Pathak VV, Kothari R, Chopra A et al (2015) Experimental and kinetic studies for phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater. J Environ Manag 163:270–277

    Article  CAS  Google Scholar 

  • Pazarlioğlu NK, Telefoncu A (2005) Biodegradation of phenol by Pseudomonas putida immobilized on activated pumice particles. Process Biochem 40:1807–1814

    Article  CAS  Google Scholar 

  • Peng X, Ma X, Xu Z (2015) Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge. Bioresour Technol 180:288–295

    Article  CAS  PubMed  Google Scholar 

  • Perei K, Rakhely G, Kiss I et al (2001) Biodegradation of sulfanilic acid by Pseudomonas paucimobilis. Appl Microbiol Biotechnol 55:101–107

    Article  CAS  PubMed  Google Scholar 

  • Phugare SS, Waghmare SR, Jadhav JP (2011) Purification and characterization of dye degrading of veratryl alcohol oxidase from Pseudomonas aeruginosa strain BCH. World J Microbiol Biotechnol 27:2415–2423

    Article  CAS  Google Scholar 

  • Puvaneshwari N, Muthukrishnan J, Gunasekaran P et al (2002) Biodegradation of benzidine based azodyes direct red and direct blue by the immobilized cells of Pseudomonas fluorescens D41. Indian J Exp Biol 40:1131–1136

    Google Scholar 

  • Qian HF, Chen W, Sheng GD et al (2008) Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris. Aquat Toxicol 88:301–307

    Article  CAS  PubMed  Google Scholar 

  • Rafii F, Franklin W, Cerniglia CE (1990) Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl Environ Microbiol 56:2146–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rampelotto PH (2010) Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustain For 2:1602–1623

    Article  CAS  Google Scholar 

  • Ramya M, Anusha B, Kalavathy S et al (2007) Biodecolorization and biodegradation of Reactive Blue by Aspergillus spp. Afr J Biotechnol 6:1441–1445

    CAS  Google Scholar 

  • Rani B, Kumar V, Singh J, Bisht S, Teotia P, Sharma S, Kela R (2014) Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Braz J Microbiol 45(3):1055–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy U, Sengupta S, Banerjee P et al (2018) Assessment on the decolourization of textile dye (Reactive Yellow) using Pseudomonas sp. immobilized on fly ash: response surface methodology optimization and toxicity evaluation. J Environ Manag 223:185–195

    Article  CAS  Google Scholar 

  • Ryu BH, Weon YD (1992) Decolorization of Azo Dyes by Aspergillus sojae B-10. J Microbiol Biotechnol 2:215–219

    CAS  Google Scholar 

  • Sá CS, Boaventura RA (2001) Biodegradation of phenol by Pseudomonas putida DSM 548 in a trickling bed reactor. Biochem Eng J 9:211–219

    Article  Google Scholar 

  • Safi C, Zebib B, Merah O et al (2014) Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew Sust Energ Rev 35:265–278

    Article  Google Scholar 

  • Samson RA, Visagie CM, Houbraken J et al (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Studies Myco 78:141–173

    Article  CAS  Google Scholar 

  • Saparrat MCN, Balatti PA, Arambarri AM et al (2014) Coriolopsis rigida, a potential model of white-rot fungi that produce extracellular laccases. J Ind Microbiol Biotechnol 41:607–617

    Article  CAS  PubMed  Google Scholar 

  • Sarnaik S, Kanekar P (1995) Bioremediation of colour of methyl violet and phenol from a dye-industry waste effluent using Pseudomonas spp. isolated from factory soil. J Appl Bacteriol 79:459–469

    Article  CAS  Google Scholar 

  • Sarnaik S, Kanekar P (1999) Biodegradation of methyl violet by Pseudomonas mendocina MCM B-402. Appl Microbiol Biotechnol 52:251–254

    Article  CAS  PubMed  Google Scholar 

  • Sathishkumar K, Sathiyaraj S, Parthipan P et al (2017) Electrochemical decolorization of methyl red by RuO2 -IrO2 -TiO2 electrode and biodegradation with Pseudomonas stutzeri MN1 and Acinetobacter baumannii MN3: an integrated approach. Chemosphere 183:204–211

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar KV, Basha CA, Prabhu HJ et al (2010) The potential of free cells of Pseudomonas aeruginosa on textile dye degradation. Bioresour Technol 101:2678–2684

    Article  CAS  PubMed  Google Scholar 

  • Seo YH, Park D, Oh YK et al (2015) Harvesting of microalgae cell using oxidized dye wastewater. Bioresour Technol 192:802–806

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Singh L, Dilbaghi N (2009) Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fresenius. J Hazard Mater 161:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Silveira E, Marques PP, Silva SS et al (2009) Selection of Pseudomonas for industrial textile dyes decolourization. Int Biodeterior Biodegrad 63:230–235

    Article  CAS  Google Scholar 

  • Singh U, Arora NK, Sachan P (2018) Simultaneous biodegradation of phenol and cyanide present in coke-oven effluent using immobilized Pseudomonas putida and Pseudomonas stutzeri. Braz J Microbiol 49:38–44

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Singh R, Chaurasia AK et al (2016) Self-sustainable Chlorella pyrenoidosa strain NCIM 2738 based photobioreactor for removal of Direct Red-31 dye along with other industrial pollutants to improve the water-quality. J Hazard Mater 306:386–394

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R, Kathiravan MN, Gopinath KP (2011) Degradation of Tectilon Yellow 2G by hybrid technique: combination of sonolysis and biodegradation using mutant Pseudomonas putida. Bioresour Technol 102:2242–2247

    Article  CAS  PubMed  Google Scholar 

  • Stormo KE, Crawford RL (1992) Preparation of encapsulated microbial cells for environmental applications. Appl Environ Microbiol 58:727–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiura W, Miyashita T, Yokoyama T et al (1999) Isolation of azo-dye degrading microorganisms and their application to white discharge printing of fabric. J Biosci Bioeng 88:577–581

    Article  CAS  PubMed  Google Scholar 

  • Sultan M (2017) Polyurethane for removal of organic dyes from textile wastewater. Environ Chem Lett 15:347. https://doi.org/10.1007/s10311-016-0597-8

    Article  CAS  Google Scholar 

  • Sumathi S, Manju B (2000) Uptake of reactive textile dyes by Aspergillus foetidus. Enzym Microb Technol 27:347–355

    Article  CAS  Google Scholar 

  • Surkatti R, El-Naas MH (2014) Biological treatment of wastewater contaminated with p-cresol using Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. J Water. Process Eng 1:84–90

    Google Scholar 

  • Suzuki Y, Yoda T, Ruhul A et al (2001) Molecular cloning and characterization of the gene encoding azoreductase from Bacillus sp. OY 1-2isolated from soil. J Biol Chem 246:9059–9065

    Article  Google Scholar 

  • Tamayo-Ramos JA, van Berkel WJ, de Graaff LH (2012) Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger. Microb Cell Factories 11:165. https://doi.org/10.1186/1475-2859-11-165

    Article  CAS  Google Scholar 

  • Tao R, Kinnunen V, Praveenkumar R et al (2017) Comparison of Scenedesmus acuminatus and Chlorella vulgaris cultivation in liquid digestates from anaerobic digestion of pulp and paper industry and municipal wastewater treatment sludge. J Appl Phycol 29:2845–2856

    Article  CAS  Google Scholar 

  • Telke AA, Kalyani DC, Jadhav UU et al (2009) Purification and characterization of an extracellular laccase from a Pseudomonas sp. LBC1 and its application for the removal of bisphenol A. J Mol Cata B: Enzymatic 61:252–260

    Article  CAS  Google Scholar 

  • Telke AA, Kim SW, Govindwar SP (2012) Significant reduction in toxicity, BOD, and COD of textile dyes and textile industry effluent by a novel bacterium Pseudomonas sp. LBC1. Folia Microbiol 57:115–122

    Article  CAS  Google Scholar 

  • Thao TP, Kao HC, Juang RS et al (2013) Kinetic characteristics of biodegradation of methyl orange by Pseudomonas putida mt2 in suspended and immobilized cell systems. J Taiwan Inst Chem Eng 44:780–785

    Article  CAS  Google Scholar 

  • Tsai WT, Chen HR (2010) Removal of malachite green from aqueous solution using low-cost chlorella-based biomass. J Hazard Mater 175:844–849

    Article  CAS  PubMed  Google Scholar 

  • Tuttolomondo MV, Alvarez GS, Desimone MF et al (2014) Removal of azo dyes from water by sol–gel immobilized Pseudomonas sp. J Environ Chem Eng 2:131–136

    Article  CAS  Google Scholar 

  • Wang B, Hu Y (2007) Comparison of four supports for adsorption of reactive dyes by immobilized Aspergillus fumigatus beads. J Environ Sci 19:451–457

    Article  CAS  Google Scholar 

  • Wang BE, Hu YY, Xie L et al (2008) Biosorption behavior of azo dye by inactive CMC immobilized Aspergillus fumigatus beads. Bioresour Technol 99:794–800

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhang Z, Ni H et al (2012) Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase. Microb Cell Factories 11:75. https://doi.org/10.1186/1475-2859-11-75

    Article  CAS  Google Scholar 

  • Wang L, Chen X, Wang H et al (2017) Chlorella vulgaris cultivation in sludge extracts from 2,4,6-TCP wastewater treatment for toxicity removal and utilization. J Environ Manag 187:146–153

    Article  CAS  Google Scholar 

  • Wu J, Jung BG, Kim KS et al (2009) Isolation and characterization of Pseudomonas otitidis WL-13 and its capacity to decolorize triphenylmethane dyes. J Environ Sci 21:960–964

    Article  CAS  Google Scholar 

  • Xiong XJ, Meng XJ, Zheng TL (2010) Biosorption of C.I Direct Blue 199 from aqueous solution by nonviable Aspergillus niger. J Hazard Mater 175:241–246

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Wang R, Zhang YF et al (2015) Stress response of Chlorella pyrenoidosa to nitro-aromatic compounds. Environ Sci Pollut Res 22:3784–3793

    Article  CAS  Google Scholar 

  • Yang Y, Hu H, Wang G et al (2011a) Removal of malachite green from aqueous solution by immobilized Pseudomonas sp. DY1 with Aspergillus oryzae. Int Biodeterior Biodegrad 65:429–434

    Article  CAS  Google Scholar 

  • Yang Y, Jin D, Wang G et al (2011b) Competitive biosorption of Acid Blue 25 and Acid Red 337 onto unmodified and CDAB-modified biomass of Aspergillus oryzae. Bioresour Technol 102:7429–7436

    Article  CAS  PubMed  Google Scholar 

  • Yatome C, Ogawa T, Koga D et al (1981) Biodegradability of azo and triphenylmethane dyes by Pseudomonas pseudomallei 13 NA. J Soc Dye Colour 97:166–169

    Article  CAS  Google Scholar 

  • Yatome C, Ogaw T, Hishida H et al (1990) Degradation of azo dyes by cell-free extract from Pseudomonas stutzeri. J Soc Dye Colour 106:280–283

    Article  CAS  Google Scholar 

  • Yatome C, Matsufuru H, Taguchi T et al (1993) Degradation of 4-dimethylaminoazobenzene-2-carboxylic acid by Pseudomonas stutzeri. Appl Microbiol Biotechnol 39:778–781

    Article  CAS  Google Scholar 

  • Yu J, Wang X, Yue PL (2001) Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains. Water Res 35:3579–3586

    Article  CAS  PubMed  Google Scholar 

  • Zabłocka-Godlewska E, Przystaś W, Grabińska-Sota E (2014) Decolourisation of different dyes by two Pseudomonas strains under various growth conditions. Water Air Soil Pollut 225:1846. https://doi.org/10.1007/s11270-013-1846-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Sun H, Ren Y et al (2018) Chlorella zofingiensis as a promising strain in wastewater treatment. Bioresour Technol 268:286–291

    Article  CAS  PubMed  Google Scholar 

  • Zheng S, He M, Sui Y et al (2017) Kelp waste extracts combined with acetate enhances the biofuel characteristics of Chlorella sorokiniana. Bioresour Technol 225:142–150

    Article  CAS  PubMed  Google Scholar 

  • Zhipei L, Huifang Y (1991) Decolorization and biodegradation metabolism of azo dyes Pseudomonas S-42. J Environ Sci 3:89–102

    Google Scholar 

  • Zimmermann T, Kulla GH, Leisinger T (1982) Properties of purified orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur J Biochem 29:197–203

    Article  Google Scholar 

  • Zope V, Kulkarni M, Chavan M (2007) Biodegradation of synthetic textile dyes Reactive Red 195 and Reactive Green 11 by Aspergillus niger grp: an alternative approach. J Sci Ind Res 66:411–414

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pradhan, S.K., Singla, R. (2020). Potential of Thallophytes in Degradation of Dyes in Industrial Effluents. In: Arora, P. (eds) Microbial Technology for Health and Environment. Microorganisms for Sustainability, vol 22. Springer, Singapore. https://doi.org/10.1007/978-981-15-2679-4_13

Download citation

Publish with us

Policies and ethics