Skip to main content

Microbial Peroxidases and Their Unique Catalytic Potentialities to Degrade Environmentally Related Pollutants

  • Chapter
  • First Online:
Microbial Technology for Health and Environment

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 22))

Abstract

Industrial sectors play an imperative role in the economic growth and development of any nation. Nevertheless, the discharge of industrial wastewater polluted by various textile dyes, pharmaceuticals, recalcitrant organic compounds, hormones, xenobiotic compounds (i.e., insecticides, pesticides, plastics, fertilizers, and hydrocarbons), and personal care products into the receiving water bodies seriously threatened the natural ecosystem owing to their extremely toxic consequences. This problem is pervasively increasing due to the lack of efficient waste management procedures for the proper disposal and treatment of waste. Considering the diverse nature of wastewater from industrial processes, designing a cost-competitive, efficient, and eco-friendlier technology with stable remediation performance has become a challenging task for the research investigators and environmental engineers. In the past couple of decades, environmental biotechnology has witnessed a tremendous upsurge in exploring some judicious substitutes to the existing technologies for waste management. Conventionally, in practice, approaches dealing with wastewater remediation such as chemical, physical, and biological methods are either inefficient or restrictive due to techno-economic constraints. In this perspective, enzyme-assisted treatment is a rapid, easy, eco-sustainable approach and therefore has been keenly explored to degrade and mineralize an array of xenobiotic and recalcitrant organic contaminants. Peroxidases isolated and characterized by different microbial or plant-based natural resources have demonstrated great bioremediation potential. Genetic engineering and enzyme immobilization approaches have made it possible to produce a significant amount of recombinant enzymes and upgrade the half-life, catalytic stability, and activity of the biocatalyst, respectively. Moreover, the development of nanozymes might display the potential remediation capability toward a wide variety of toxic pollutants. In this chapter, we have presented a comprehensive overview of the peroxidases and advanced enzyme tools and technologies, i.e., immobilized enzyme-based constructs, nanozymes as robust catalytic tools, and genetic engineering along with their use in the degradation and detoxification of toxic substances, human-health related hazardous compounds, carcinogenic and mutagenic entities, and environmentally related contaminants of high concern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo F, Pizzul L, González ME, Cea M, Gianfreda L, Diez MC (2010) Degradation of polycyclic aromatic hydrocarbons by free and nanoclay-immobilized manganese peroxidase from Anthracophyllum discolor. Chemosphere 80(3):271–278

    Article  CAS  PubMed  Google Scholar 

  • Battistuzzi G, Bellei M, Bortolotti CA, Sola M (2010) Redox properties of heme peroxidases. Arch Biochem Biophys 500:21–36

    Article  CAS  PubMed  Google Scholar 

  • Bilal M, Asgher M (2015) Dye decolorization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase. BMC Biotechnol 15(1):111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilal M, Asgher M (2016) Enhanced catalytic potentiality of Ganoderma lucidum IBL-05 manganese peroxidase immobilized on sol-gel matrix. J Mol Catal B Enzym 128:82–93

    Article  CAS  Google Scholar 

  • Bilal M, Asgher M, Shahid M, Bhatti HN (2016) Characteristic features and dye degrading capability of agar-agar gel immobilized manganese peroxidase. Int J Biol Macromol 86:728–740

    Article  CAS  PubMed  Google Scholar 

  • Bilal M, Asgher M, Iqbal M, Hu H, Zhang X (2016a) Chitosan beads immobilized manganese peroxidase catalytic potential for detoxification and decolorization of textile effluent. Int J Biol Macromol 89:181–189

    Article  CAS  PubMed  Google Scholar 

  • Bilal M, Asgher M, Hu H, Zhang X (2016b) Kinetic characterization, thermo-stability and Reactive Red 195A dye detoxifying properties of manganese peroxidase-coupled gelatin hydrogel. Water Sci Technol 74(8):1809–1820

    Article  CAS  PubMed  Google Scholar 

  • Bilal M, Iqbal HM, Shah SZH, Hu H, Wang W, Zhang X (2016c) Horseradish peroxidase-assisted approach to decolorize and detoxify dye pollutants in a packed bed bioreactor. J Environ Manag 183:836–842

    Article  CAS  Google Scholar 

  • Bilal M, Asgher M, Parra-Saldivar R, Hu H, Wang W, Zhang X, Iqbal HMN (2017a) Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants–a review. Sci Total Environ 576:646–659

    Article  CAS  PubMed  Google Scholar 

  • Bilal M, Asgher M, Iqbal HM, Hu H, Wang W, Zhang X (2017b) Bio-catalytic performance and dye-based industrial pollutants degradation potential of agarose-immobilized MnP using a Packed Bed Reactor System. Int J Biol Macromol 102:582–590

    Article  CAS  PubMed  Google Scholar 

  • Bilal M, Iqbal HM, Hu H, Wang W, Zhang X (2017c) Enhanced bio-catalytic performance and dye degradation potential of chitosan-encapsulated horseradish peroxidase in a packed bed reactor system. Sci Total Environ 575:1352–1360

    Article  CAS  PubMed  Google Scholar 

  • Bilal M, Rasheed T, Iqbal HM, Hu H, Wang W, Zhang X (2017d) Novel characteristics of horseradish peroxidase immobilized onto the polyvinyl alcohol-alginate beads and its methyl orange degradation potential. Int J Biol Macromol 105:328–335

    Article  CAS  PubMed  Google Scholar 

  • Bilal M, Asgher M, Iqbal HM, Hu H, Zhang X (2017e) Bio-based degradation of emerging endocrine-disrupting and dye-based pollutants using cross-linked enzyme aggregates. Environ Sci Pollut Res 24(8):7035–7041

    Article  CAS  Google Scholar 

  • Bilal M, Rasheed T, Zhao Y, Iqbal HM, Cui J (2018) “Smart” chemistry and its application in peroxidase immobilization using different support materials. Int J Biol Macromol 119(2018):278–290

    Article  CAS  PubMed  Google Scholar 

  • Chang Q, Tang H (2014) Immobilization of horseradish peroxidase on NH2-modified magnetic Fe3O4/SiO2 particles and its application in removal of 2, 4-dichlorophenol. Molecules 19(10):15768–15782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang Q, Jiang G, Tang H, Li N, Huang J, Wu L (2015) Enzymatic removal of chlorophenols using horseradish peroxidase immobilized on superparamagnetic Fe3O4/graphene oxide nanocomposite. Chin J Catal 36(7):961–968

    Article  CAS  Google Scholar 

  • Dhanya MS (2014) Advances in microbial biodegradation of chlorpyrifos. J Environ Res Develop 9(1):232

    Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri A (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59(2–3):143–152

    CAS  PubMed  Google Scholar 

  • Dunford HB (1999) Heme peroxidases. Wiley, Chichester, p 507

    Google Scholar 

  • Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI (2017) Lignin peroxidase functionalities and prospective applications. Microbiol Open 6(1):e00394

    Article  CAS  Google Scholar 

  • Farrell RL, Murtagh KE, Tien M, Mozuch MD, Kirk TK (1989) Characterization of lignin peroxidase isoenzymes. Enyzm Microb Technol 11:322–328

    Article  CAS  Google Scholar 

  • Ferreira-Leitao VS, de Carvalho MEA, Bon EP (2007) Lignin peroxidase efficiency for methylene blue decolouration: comparison to reported methods. Dyes Pigments 74(1):230–236

    Article  CAS  Google Scholar 

  • Gao L, Yan X (2017) Nanozymes: an emerging field bridging nanotechnology and biology. Sci China Life Sci 59:400–402

    Article  Google Scholar 

  • Gassara F, Brar SK, Verma M, Tyagi RD (2013) Bisphenol A degradation in water by ligninolytic enzymes. Chemosphere 92(10):1356–1360

    Article  CAS  PubMed  Google Scholar 

  • Glumoff T, Harvey P, Molinari S, Goble M, Frank G, Palmer JM et al (1990) Lignin peroxidase from Phanerochaete chrysosporium molecular and kinetic characterization of isozymes. Eur J Biochem 187:515–520

    Article  CAS  PubMed  Google Scholar 

  • Haigler BE, Spain JC (1993) Biodegradation of 4-nitrotoluene by Pseudomonas sp. strain 4NT. Appl Environ Microbiol 59:2239–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30:454–466

    Article  CAS  Google Scholar 

  • Hofrichter M, Steffen K, Hatakka A (2001) Decomposition of Humic substances by Ligninolytic Fungi. 5th Finnish Conference on Environmental Science and Proceedings, Turku, Finland, pp 56–60

    Google Scholar 

  • Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87:871–897

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Xu L, Wen X (2013) Mesoporous silicas synthesis and application for lignin peroxidase. Chem Mater 21(6):1144–1153

    Google Scholar 

  • Huber P, Carré B (2012) Decolorization of process waters in deinking mills and similar applications: a review. BioRes 7(1):1366–1382

    Google Scholar 

  • Ivancich A, Mazza G, Desbois A (2001) Comparative electron paramagnetic resonance study of radical intermediates in turnip peroxidase isozymes. Biochemistry 40:6860–6866

    Article  CAS  PubMed  Google Scholar 

  • Johansson T, Welinder KG, Nyman PO (1993) Isozymes of lignin peroxidase and manganese (II) peroxidase from the white-rot basidiomycete Trametes versicolor. II. Partial sequences, peptide maps, and amino acid and carbohydrate compositions. Arch Biochem Biophys 300:57–62

    Article  CAS  PubMed  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  CAS  PubMed  Google Scholar 

  • Ju KS, Parales RE (2006) Control of substrate specificity by active-site residues in nitrobenzene dioxygenase. Appl Environ Microbiol 72(3):1817–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk TK, Croan S, Tien M, Murtagh KE, Farrell RL (1986) Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enyzm Microb Technol 8:27–32

    Article  CAS  Google Scholar 

  • Koua D, Cerutti L, Falquet L et al (2009) PeroxiBase: a database with new tools for peroxidase family classification. Nucleic Acids Res 37:D261–D266

    Article  CAS  PubMed  Google Scholar 

  • Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250

    Article  CAS  Google Scholar 

  • Lee KS, Parales JV, Friemann R, Parales RE (2005) Active site residues controlling substrate specificity in 2-nitrotoluene dioxygenase from Acid ovorax sp. strain JS42. J Ind Microbiol Biotechnol 32:465–473

    Article  CAS  PubMed  Google Scholar 

  • Li ZL, Cheng L, Zhang LW, Liu W, Ma WQ, Liu L (2017) Preparation of a novel multi-walled-carbon-nanotube/cordierite composite support and its immobilization effect on horseradish peroxidase. Process Saf Environ Prot 107:463–467

    Article  CAS  Google Scholar 

  • Liang H, Lin F, Zhang Z, Liu B, Jiang S, Yuan Q, Liu J (2017) Multicopper laccase mimicking nanozymes with nucleotides as ligands. ACS Appl Mater Interfaces 9(2):1352–1360

    Article  CAS  PubMed  Google Scholar 

  • Lobos S, Larraín J, Salas L, Cullen D, Vicuña, R (1994) Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Microbiol 140(10):2691–2698

    Google Scholar 

  • Lu YM, Yang QY, Wang LM, Zhang MZ, Guo WQ, Cai ZN et al (2017) Enhanced activity of immobilized horseradish peroxidase by carbon nanospheres for phenols removal. CLEAN–Soil, Air, Water 45(2):1600077

    Article  CAS  Google Scholar 

  • Luan PP, Jiang YJ, Zhang SP, Gao J, Su ZG, Ma GH, Zhang YF (2014) Chitosan-mediated formation of biomimetic silica nanoparticles: an effective method for manganese peroxidase immobilization and stabilization. J Biosci Bioeng 118(5):575–582

    Article  CAS  PubMed  Google Scholar 

  • Marco-Urrea E, Aranda E, Caminal G, Guillén F (2009) Induction of hydroxyl radical production in Trametes versicolor to degrade recalcitrant chlorinated hydrocarbons. Bioresour Technol 100(23):5757–5762

    Article  CAS  PubMed  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  CAS  PubMed  Google Scholar 

  • Morgenstern I, Klopman S, Hibbett DS (2008) Molecular evolution and diversity of lignin degrading heme peroxidases in the Agarico mycetes. J Mol Evol 66:243–257

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova SV, Pozdnyakova NN, Turkovskay OV (2009) Emulsifying agent production during PAHs degradation by the white rot fungus Pleurotus ostreatus D1. Curr Microbiol 58:554–558

    Article  CAS  PubMed  Google Scholar 

  • Oliveira SF, da Luz JMR, Kasuya MCM, Ladeira LO, Junior AC (2018) Enzymatic extract containing lignin peroxidase immobilized on carbon nanotubes: potential biocatalyst in dye decolourization. Saudi J Biol Sci 25:651–659

    Article  CAS  PubMed  Google Scholar 

  • Qiu H, Li Y, Ji G, Zhou G, Huang X, Qu Y, Gao P (2009) Immobilization of lignin peroxidase on nanoporous gold: enzymatic properties and in situ release of H2O2 by co-immobilized glucose oxidase. Bioresour Technol 100(17):3837–3842

    Article  CAS  PubMed  Google Scholar 

  • Ran YH, Che ZF, Chen WQ (2012) Co-immobilized lignin peroxidase and manganese peroxidase from Coriolus versicolor capable of decolorizing molasses wastewater. Appl Mech Mater 138:1067–1071. Trans Tech Publications.

    Google Scholar 

  • Šekuljica NŽ, Prlainović NŽ, Jovanović JR, Stefanović AB, Djokić VR, Mijin DŽ, Knežević-Jugović ZD (2016) Immobilization of horseradish peroxidase onto kaolin. Bioprocess Biosyst Eng 39(3):461–472

    Article  CAS  PubMed  Google Scholar 

  • Shaheen R, Asgher M, Hussain F, Bhatti HN (2017) Immobilized lignin peroxidase from Ganoderma lucidum IBL-05 with improved dye decolorization and cytotoxicity reduction properties. Int J Biol Macromol 103:57–64

    Article  CAS  PubMed  Google Scholar 

  • Shin HY, Park TJ, Kim MI (2015) Recent research trends and future prospects in nanozymes. J Nanomater 2015:7

    Google Scholar 

  • Singh RK, Tiwari MK, Singh R, Lee JK (2013) From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci 14(1):1232–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skoronski E, Souza DH, Ely C, Broilo F, Fernandes M, Junior AF, Ghislandi MG (2017) Immobilization of laccase from Aspergillus oryzae on graphene nanosheets. Int J Biol Macromol 99:121–127

    Google Scholar 

  • Smulevich G, Jakopitsch C, Droghetti E, Obinger C (2006) Probing the structure and bifunctionality of catalase-peroxidase (KatG). J Inorg Biochem 100:568–585

    Article  CAS  PubMed  Google Scholar 

  • Sofia P, Asgher M, Shahid M, Randhawa MA (2016) Chitosan beads immobilized schizophyllum commune ibl-06 lignin peroxidase with novel thermo stability, catalytic and dye removal properties. J Animal Plant Sci 26(5)

    Google Scholar 

  • Sugiura T, Yamagishi K, Kimura T, Nishida T, Kawagishi H, Hirai H (2009) Cloning and homologous expression of novel lignin peroxidase genes in the white-rot fungus Phanerochaete sordida YK-624. Biosci Biotechnol Biochem 73:1793–1798

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Jin X, Long N, Zhang R (2017) Improved biodegradation of synthetic azo dye by horseradish peroxidase cross-linked on nano-composite support. Int J Biol Macromol 95:1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Jin X, Jiang F, Zhang R (2018) Immobilization of horseradish peroxidase on ZnO nanowires/macroporous SiO2 composites for the complete decolorization of anthraquinone dyes. Biotechnol Appl Biochem 65(2):220–229

    Article  CAS  PubMed  Google Scholar 

  • Tien M, Kirk K (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium. Science 221:661–663

    Article  CAS  PubMed  Google Scholar 

  • Tien M, Kirk TK (1988) Biomass, part B: lignin, pectin and chitin. In: Wood WA, Kellog SC (eds) Methods in enzymology. Academic Press, San Diego, California, USA, pp 238–249

    Google Scholar 

  • Tuor U, Wariishi H, Schoemaker HE, Gold MH (1992) Oxidation of phenolic arylglycerol β-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an α-carbonyl model compound. Biochemistry 31:4986–4995

    Article  CAS  PubMed  Google Scholar 

  • Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65(3):249–259

    Article  CAS  PubMed  Google Scholar 

  • Veitch NC, Smith AT (2001) Horseradish peroxidase. Adv Inorg Chem 51:107–101

    Article  CAS  Google Scholar 

  • Vineh MB, Saboury AA, Poostchi AA, Rashidi AM, Parivar K (2018) Stability and activity improvement of horseradish peroxidase by covalent immobilization on functionalized reduced graphene oxide and biodegradation of high phenol concentration. Int J Biol Macromol 106:1314–1322

    Article  CAS  Google Scholar 

  • Wang X, Hu Y, Wei H (2016) Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorgan Chem Front 3(1):41–60

    Article  CAS  Google Scholar 

  • Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Xiao D, Zhao H, He H, Peng J, Wang C et al (2015) A nanocomposite consisting of graphene oxide and Fe3O4 magnetic nanoparticles for the extraction of flavonoids from tea, wine and urine samples. Microchim Acta 182(13–14):2299–2306

    Article  CAS  Google Scholar 

  • Xu LQ, Wen XH, Ding HJ (2010) Immobilization of lignin peroxidase on spherical mesoporous material. Huanjingkexue 31(10):2493–2499

    CAS  Google Scholar 

  • Yao J, Jia R, Zheng L et al (2013) Rapid decolorization of azo dyes by crude manganese peroxidase from Schizophyllum sp. F17 in solid-state fermentation. Biotechnol Bioproc E 18:868–877

    Article  CAS  Google Scholar 

  • Zhang C, Cai X (2019) Immobilization of horseradish peroxidase on Fe3O4/nanotubes composites for Biocatalysis-degradation of phenol. Compos Interfaces 26(5):379–396

    Article  CAS  Google Scholar 

  • Zhang Y, Wu H, Huang X, Zhang J, Guo S (2011) Effect of substrate (ZnO) morphology on enzyme immobilization and its catalytic activity. Nanoscale Res Lett 6(1):450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Zhang W, Zhao L, Liu H (2016) Degradation of phenol with Horseradish Peroxidase immobilized on ZnO nanocrystals under combined irradiation of microwaves and ultrasound. Desalin Water Treat 57(51):24406–24416

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Both authors are highly obliged to their respective departments and universities for providing the literature services.

Conflict of Interest

Both authors declare no conflicting interests related to this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bilal, M., Iqbal, H.M.N. (2020). Microbial Peroxidases and Their Unique Catalytic Potentialities to Degrade Environmentally Related Pollutants. In: Arora, P. (eds) Microbial Technology for Health and Environment. Microorganisms for Sustainability, vol 22. Springer, Singapore. https://doi.org/10.1007/978-981-15-2679-4_1

Download citation

Publish with us

Policies and ethics