Skip to main content

Examples of Decompositions for Time and Space Domains and Discretization of Equations for General Purpose Computational Fluid Dynamics Programs and Historical Perspective of Some Key Developments

  • Chapter
  • First Online:
50 Years of CFD in Engineering Sciences

Abstract

This paper presents two examples from mid-eighties related to decomposition for time and space domains and discretization of equations for the general purpose Computational Fluid Dynamics (CFD) programs. The first example is related to the implementation of rectangular coordinates to simulate flow and heat transfer in the arbitrarily shaped domains with various heat transfer boundary conditions. The second example demonstrates capabilities to introduce and test implicit and explicit higher order numerical schemes. In both cases the implementation of linearized source terms for various equations is used to allow regrouping and adding new terms in equations without the need for major changes to the general purpose CFD programs. Presented examples provide a historical perspective of some key developments based on the well-planned code architecture. These developments are contrasted with the other selected historical developments and current practices.

Presented work had been performed at CFD Unit, ME Building, Imperial College, Exhibition Road, London, U.K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a :

Coefficient in the FDE

\(a^{C}\) :

Convection coefficient for FDE

\(a^{d}\) :

Diffusion coefficient for FDE

\(a^{{\prime }}\) :

Coefficients for \(\Phi ^{{\prime }}\) in FDE

\(a^{*}\) :

Coefficients for \(\Phi ^{*}\) in FDE

A :

Surface area of the relevant cell area

c :

Concentration

\(\left\langle c \right\rangle\) :

Concentration in the polluted cell at the beginning

C :

Courant number

\(C^{{\prime }} = c/\left\langle c \right\rangle\) :

Dimensionless concentration

d :

Distance between the two neighbor grid nodes

D :

Tube diameter or enclosure width

D :

Diffusion coefficient

f :

Friction factor

g :

Acceleration of gravity

\(Gr = g\beta \left( {\overline{T}_{w} - T_{b} } \right)D^{3} /\nu^{2}\) :

Grashof number

\(Gr^{ + } = \frac{{g\beta Q^{{\prime }} D^{3} }}{{\left( {k\nu^{2} 8} \right)}} = \frac{{Gr\overline{Nu} \pi }}{16}\) :

Modified Grashof number

\(h = q/\left( {T_{w} - T_{b} } \right)\) :

Local heat transfer coefficient

\(\bar{h} = q/\left( {\overline{T}_{w} - T_{b} } \right)\) :

Average heat transfer coefficient

k :

Thermal conductivity

L :

Dimension of the cell, see Fig. 9

\(Nu = hD/k\) :

Local Nusselt number

\(\overline{Nu} = \bar{h}D/k\) :

Average Nusselt number

\(Nu_{0}\) :

Forced convection value of \(\overline{Nu}\)

p :

Pressure

\(p^{*}\) :

Reduced pressure

P :

Dimensionless pressure

\(Pe = \rho u\left( {\delta x} \right)/\Gamma\) :

Local (grid) Peclet number

\(Pe = Re\,Pr = u\,D/\Gamma\) :

Enclosure Peclet number

\(Pr = \nu /\Gamma\) :

Prandtl number

\(q = \bar{h}\left( {\overline{T}_{w} - T_{b} } \right) = 2Q^{{\prime }} /\left( {\pi D} \right)\) :

Rate of heat transfer per unit area

\(Q^{{\prime }} = \bar{h}\left( {\overline{T}_{w} - T_{b} } \right)\pi D/2\) :

Rate of heat transfer per unit length

r :

Radial coordinates

R :

Tube radius

\(Re = \bar{w}D/\nu\) :

Reynolds number

\(S_{T}\) :

Source term for the cells near the heated boundary

t :

Time

\(T = t/\Delta t\) :

Dimensionless time

T :

Temperature

\(T_{b}\) :

Bulk temperature

\(T_{w}\) :

Local wall temperature

u, v, w :

Velocity components in x, y, z directions

U, V, W :

Dimensionless velocities

\(\bar{w}\) :

Mean axial velocity

\(\overline{W}\) :

Mean value of W

x, y, z, X, Y, Z :

Cartesian coordinates

\(Z = \frac{z}{L}\) :

Dimensionless distance

α :

Angle of gravitation action, see Fig. 1

β :

Thermal expansion coefficient

\(\Delta r\) :

Distance between the boundary and the boundary grid node, see Fig. 4

\(\Delta t\) :

Time increment

\(\Delta \theta\) :

Corresponding angle for the boundary cell, see Fig. 4

θ :

Angular coordinate

\(\nu\) :

Kinematic viscosity

ρ :

Density

\(\Gamma\) :

Diffusion coefficient

\(\Phi = (T - T_{b} )/\left( {Q^{{\prime }} /k} \right)\) :

Dimensionless temperature

\(\Phi\) :

Value at grid node

\(\Phi ^{{\prime }}\) :

Correction to \(\Phi\)

\(\Phi ^{*}\) :

Stored values of the \(\Phi\)

\(\Phi _{h}\), \(\Phi _{l}\):

Values at higher and lower cell faces, see Fig. 10

\(\Phi _{T}\) :

Value at grid point P at previous time step

\(\psi\) :

Stream function

References

  1. Harlow, F. H. (1955). A machine calculation method for hydrodynamic problems. LAMS-1956, Los Alamos.

    Google Scholar 

  2. Harlow, F. H., & Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Physics of Fluids, 8, 2182–2189. https://doi.org/10.1063/1.1761178.

    Article  MathSciNet  MATH  Google Scholar 

  3. Harlow, F. H. (1964). The particle-in-cell computing method for fluid dynamics. In B. Alder (Ed.), Methods in computational physics (pp. 319–343). New York: Academic Press.

    Google Scholar 

  4. Patankar, S. V., & Spalding, D. B. (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15, 1787–1806. https://doi.org/10.1016/0017-9310(72)90054-3.

    Article  MATH  Google Scholar 

  5. Pratap, V. S., & Spalding, D. B. (1976). Fluid flow and heat transfer in three-dimensional duct flows. International Journal of Heat and Mass Transfer, 19, 1183–1188. https://doi.org/10.1016/0017-9310(76)90152-6.

    Article  MATH  Google Scholar 

  6. Rosten, H. I., & Spalding, D. B. (1985). PHOENICS-84 Reference Handbook. CHAM TR/100, CHAM, London, UK.

    Google Scholar 

  7. Patankar, S. V. (1980). Numerical heat transfer and fluid flow. USA: Hemisphere Publishing Corp. https://doi.org/10.1201/9781482234213.

    Book  MATH  Google Scholar 

  8. Runchal, A. K. (2012). Emergence of computational fluid dynamics at Imperial College (1965–1975): A personal recollection. Journal of Heat Transfer, 135, 011009-1–011009-9. https://doi.org/10.1115/1.4007655.

  9. Dzodzo, M. B. (1987). Application of rectangular co-ordinates to the problem of laminar combined convection in a straight horizontal tube whose circumference is heated nonuniformly. PDR/CFDU IC/33 Report, Computational Fluid Dynamics Unit, Imperial College of Science and Technology, London.

    Google Scholar 

  10. Dzodzo, M. B., & Spalding D. B. (1986). Three-dimensional transient pollutant-cloud transport as a comparison test for the FIP, QUICK, QUICKEST and LEITH’S formulations. PDR/CFDU IC/28 Report, Computational Fluid Dynamics Unit, Imperial College of Science and Technology, London.

    Google Scholar 

  11. Noye, B. J. (1978). an introduction to finite difference technologies. In B. J. Noye (Ed.), Numerical simulation of fluid motion. North-Holland Publishing Company.

    Google Scholar 

  12. Rhie, C. M. (1981). A numerical study of the flow past an isolated airfoil with separation. Ph.D. thesis, Dept. of Mech. and Ind. Eng., University of Illinois at Urbana-Champaign.

    Google Scholar 

  13. Rhie, C. M., & Chow, W. L. (1983). Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal, 21, 1525–1532. https://doi.org/10.2514/3.8284.

    Article  MATH  Google Scholar 

  14. Ferziger, J. H., & Peric, M. (2002). Computational methods for fluid dynamics (3rd ed.). Springer. https://doi.org/10.1007/978-3-642-56026-2.

    Book  MATH  Google Scholar 

  15. Roelofs, F., Gopala, V. R., Van Tichelen, K., Cheng, X., Merzari, E., & Pointer, W. D. (2013). Status and future challenges of CFD for liquid metal cooled reactors. In IAEA fast reactor conference.

    Google Scholar 

  16. Viellieber, M., & Class, A. (2015). Investigating reactor components with the coarse-grid-methodology. In 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH-16, Chicago, IL, August 30–September 4, 2015 (pp. 2788–2801).

    Google Scholar 

  17. Zienkiewicz, O. C. (1975). Why finite elements? In R. H. Gallagher, J. T. Oden, C. Taylor, & O. C. Zienkiewicz (Eds.), Finite elements in fluids—Vol. 1 Viscous flow and hydrodynamics, Chapter 1 (pp. 1–23). Wiley.

    Google Scholar 

  18. Baker, A. J. (1983). Finite element computational fluid mechanics. Hemisphere Publishing Corporation.

    Google Scholar 

  19. Brebbia, C. A., Telles, J. C. F., & Wrobel, L. (1984). Boundary element techniques in engineering: Theory & application in engineering. New York: Springer. https://doi.org/10.1007/978-3-642-48860-3.

    Book  MATH  Google Scholar 

  20. Patera, A. T. (1984). A spectral element method for fluid dynamics: Laminar flow in a channel expansion. Journal of Computational Physics, 54, 468–488. https://doi.org/10.1016/0021-9991(84)90128-1.

    Article  MATH  Google Scholar 

  21. Fischer, P. T., & Patera, A. T. (1991). Parallel spectral element solution of the Stokes problem. Journal of Computational Physics, 92, 380–421. https://doi.org/10.1016/0021-9991(91)90216-8.

    Article  MATH  Google Scholar 

  22. Deville, M. O., Fischer, P. F., & Mund, E. H. (2002). High-order methods for incompressible fluid flow. Cambridge University Press. https://doi.org/10.1017/cbo9780511546792.

    Article  MATH  Google Scholar 

  23. Lucy, L. (1977). A numerical approach to testing the fission hypothesis. The Astronomical Journal, 82, 1013–1024. https://doi.org/10.1086/112164.

    Article  Google Scholar 

  24. Gingold, R. A., & Monaghan, J. J. (1982). Kernel estimates as a basis for general particle methods in hydrodynamics. Journal of Computational Physics, 46, 429–453. https://doi.org/10.1016/0021-9991(82)90025-0.

    Article  MathSciNet  MATH  Google Scholar 

  25. Pepper, D. W., Kassab, A., & Divo, E. (2014). Introduction to finite element, boundary element, and Meshless methods. ASME Press. https://doi.org/10.1115/1.860335.

    Article  Google Scholar 

  26. Liu, G. R. (2003). Mesh free methods: Moving beyond the finite element method. In Chapter 9: Mesh free methods for fluid dynamics problems (pp. 345–389). CRC Press. https://doi.org/10.1201/9781420040586.ch9.

  27. Liu, M. B., & Liu, G. R. (2010). Smoothed particle hydrodynamics (SPH): An overview and recent developments. Archives of Computational Methods in Engineering, 17, 25–76. https://doi.org/10.1007/s11831-010-9040-7.

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen, J. S., Hillman, M., & Chi, S. W. (2017). Meshfree methods: Progress made after 20 years. Journal of Engineering Mechanics, 143, 04017001. https://doi.org/10.1061/(asce)em.1943-7889.0001176.

    Article  Google Scholar 

  29. Shin, Y. S., & Chisum, J. E. (1997). Modeling and simulation of underwater shock problems using a coupled Lagrangian-Eulerian analysis approach. Shock and Vibration, 4, 1–10. https://doi.org/10.1155/1997/123617.

    Article  Google Scholar 

  30. Leonard, B. P. (1979). A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering, 19, 59–98. https://doi.org/10.1016/0045-7825(79)90034-3.

    Article  MATH  Google Scholar 

  31. Leith, C. E. (1965). Numerical simulation of the Earth’s atmosphere. Methods Computational Physics, 4, 1–28.

    Google Scholar 

  32. Van Lear, B. (1974). Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics, 14, 361–370. https://doi.org/10.1016/0021-9991(74)90019-9.

    Article  MATH  Google Scholar 

  33. Van Lear, B. (1979). Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. Journal of Computational Physics, 32, 101–136. https://doi.org/10.1016/0021-9991(79)90145-1.

    Article  MathSciNet  MATH  Google Scholar 

  34. Godunov, S. K. (1959). A difference scheme for numerical solution of discontinuous solution of the equations of hydrodynamic (in Russian). Matematicheskii Sbornik, 47(89), Number 3, 271–306. www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=4873&option_lang=rus.

  35. Harten, A. (1983). High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 49, 357–393. https://doi.org/10.1016/0021-9991(83)90136-5.

    Article  MathSciNet  MATH  Google Scholar 

  36. Harten, A., Engquist, B., Osher, S., & Chakravarthy, S. R. (1987). Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, 71, 231–303. https://doi.org/10.1016/0021-9991(87)90031-3.

    Article  MathSciNet  MATH  Google Scholar 

  37. Courant, R., Isaacson, E., & Rees, M. (1952). On the solution of nonlinear hyperbolic differential equations by finite differences. Communications on Pure and Applied Mathematics, 5, 243–255. https://doi.org/10.1002/cpa.3160050303.

    Article  MathSciNet  MATH  Google Scholar 

  38. Spalding, D. B. (1972). A novel finite-difference formulation for differential expression involving both first and second derivatives. International Journal for Numerical Methods in Engineering, 4, 551–559. https://doi.org/10.1002/nme.1620040409.

    Article  Google Scholar 

  39. Raithby, G. D., & Torrance, K. E. (1974). Upstream-weighted differencing schemes and their application to elliptic problems involving fluid flow. Computers & Fluids, 2, 191–206. https://doi.org/10.1016/0045-7930(74)90013-9.

    Article  MathSciNet  MATH  Google Scholar 

  40. Runchal, A. K. (1972). Convergence and accuracy of the three finite difference schemes for a two-dimensional conduction and convection problem. International Journal for Numerical Methods in Engineering, 4, 541–550. https://doi.org/10.1002/nme.1620040408.

    Article  Google Scholar 

  41. De Vahl Davis, G., & Mallinson, G. D. (1976). An evaluation of upwind and central difference approximations by study of recirculating flow. Computers and Fluids, 4, 29–43. https://doi.org/10.1016/0045-7930(76)90010-4.

    Article  MATH  Google Scholar 

  42. Agrawal, R. K. (1981). A third-order-accurate upwind scheme for Navier-Stokes solutions in three dimensions. In K. N. Ghia, T. J. Mueller, & Patel (Eds.), Computers in flow predictions and fluid dynamics experiments. Winter Annual Meeting of the ASME, ASME, Washington, D.C., November 15–20, 1981 (pp. 73–82).

    Google Scholar 

  43. Kawamura, T., & Kuwahara, K. (1984). Computation of high Reynolds number flow around a circular cylinder of high reynolds number flow around a circular cylinder with surface roughness. In AIAA-84–0340, AIAA 22nd Aerospace Sciences Meeting, Reno, Nevada, USA, January 9–12, 1984. https://doi.org/10.2514/6.1984-340.

  44. Kawamura, T., & Kuwahara, K. (1985). Direct simulation of a turbulent inner flow by finite-difference method. In AIAA-85-0376, AIAA 23rd Aerospace Sciences Meeting, Reno, Nevada, USA, January 14–17, 1985. https://doi.org/10.2514/6.1985-376.

  45. Leonard, B. P. (1979). A survey of finite differences of opinion on numerical muddling of the incomprehensible defective confusion equation. In T. J. R. Hughes (Ed.), Finite element methods for convection dominated flows. Presented at The Winter Annual Meeting of the American Society of Mechanical Engineers, sponsored by: The Applied Mechanics Division, ASME, AMD, New York, NY, USA, December 2–7, 1979 (Vol. 34, pp. 1–17).

    Google Scholar 

  46. Leonard, B. P. (1991). The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Computer Methods in Applied Mechanics and Engineering, 88, 17–74. https://doi.org/10.1016/0045-7825(91)90232-u.

    Article  MATH  Google Scholar 

  47. Darwish, M. S. (1993). A new high-resolution scheme based on the normalized variable formulation. Numerical Heat Transfer, Part B: Fundamentals, 24, 353–371. https://doi.org/10.1080/10407799308955898.

    Article  Google Scholar 

  48. Malin, M. R., & Waterson, N. P. (1999). Schemes for convection discretization in PHOENICS. PHOENICS Journal, 12(2), 173–201.

    Google Scholar 

  49. Jakobsen, H. A. (2003). Numerical convection algorithms and their role in Eulerian CFD reactor simulations. International Journal of Chemical Reactor Engineering, 1, Article A1, 1–15. https://doi.org/10.2202/1542-6580.1006.

  50. Hou, J., Liang, Q., Zhang, H., & Hinkelmann, R. (2015). An efficient unstructured MUSCL scheme for solving the 2D shallow water equations. Environmental Modelling and Software, 66, 131–152. https://doi.org/10.1016/j.envsoft.2014.12.007.

    Article  Google Scholar 

  51. Patankar, S. V., Ramadhyani, S., & Sparrow, E. M. (1978). Effect of circumferentially nonuniform heating on laminar combined convection in a horizontal tube. Journal of Heat Transfer, 100, 63–70. https://doi.org/10.1115/1.3450505.

    Article  Google Scholar 

  52. Dzodzo, M. B. (1983). Effect of non-uniform heating on laminar mixed convection in a straight horizontal tube (in Serbian). M.Sc., Dept. of Mechanical Engineering, The University of Belgrade.

    Google Scholar 

  53. Reynolds, W. C. (1960). Heat transfer to fully developed laminar flow in a circular tube with arbitrary circumference heat flux. Journal of Heat Transfer, 82, 108–112. https://doi.org/10.1115/1.3679887.

    Article  Google Scholar 

  54. Dzodzo, M. (1991). Application of rectangular coordinates to the problem of laminar natural convection in enclosures of arbitrary cross-section. In Proceedings of the 1st ICHMT International Numerical Heat Transfer Conference and Software Show, Part II, Guildford, Surrey, July 22–26, 1991 (pp. 1–11).

    Google Scholar 

  55. Dzodzo, M. B. (1991). Laminar natural convection in some enclosures of arbitrary cross sections (in Serbian). Ph.D. thesis, Dept. of Mechanical Engineering, The University of Belgrade.

    Google Scholar 

  56. Dzodzo, M. B. (1993). Visualization of laminar natural convection in romb-shaped enclosures by means of liquid crystals. In S. Sideman, K. Hijikata, & W. J. Yang (Eds.), Imaging in transport processes (pp. 183–193). Begell House Publishers.

    Google Scholar 

  57. Dzodzo, M. B. (2013). Natural convection in cubic and rhomb-shaped enclosures. In Proceedings of the ASME 2013 Heat Transfer Summer Conference, Paper No. HT2013-17724, Minneapolis, MN, USA, July 14–19, 2013 (pp. V003T21A004, 10 pp.). https://doi.org/10.1115/ht2013-17724.

  58. Peric, M. (1985). A finite volume method for the prediction of three dimensional fluid flow in complex ducts. Ph.D. thesis, Imperial College, London, U.K.

    Google Scholar 

  59. Boussinesq, J. (1903). Théorie Analitique de la Chaleur (in French) (Vol. 2, p. 172). Paris: Gauthier-Villars.

    Google Scholar 

  60. Khosla, P. K., & Rubin, S. G. (1974). A diagonally dominant second-order accurate implicit scheme. Computers and Fluids, 2, 207–209. https://doi.org/10.1016/0045-7930(74)90014-0.

    Article  MATH  Google Scholar 

  61. Cuckovic-Dzodzo, D. M. (1996). Effects of heat conducting partition on laminar natural convection in an enclosure (in Serbian). M.Sc. Thesis, Department of Mechanical Engineering, The University of Belgrade.

    Google Scholar 

  62. Cuckovic-Dzodzo, D. M., Dzodzo, M. B., & Pavlovic, M. D. (1996). Visualization of laminar natural convection in a cubical enclosure with partition. In H. W. Coleman (Ed.), Proceedings of the ASME Fluids Engineering Division Summer Meeting, 1996. Presented at the 1996 ASME Fluids Engineering Division Summer Meeting, FED, San Diego, California, July 7–11, 1996 (Vol. 239, pp. 225–230).

    Google Scholar 

  63. Cuckovic-Dzodzo, D. M., Dzodzo, M. B., & Pavlovic, M. D. (1998). A mathematical model and numerical solution for the conjugated heat transfer in a fully partitioned enclosure containing the fluids with nonlinear thermophysical properties. Theoretical and Applied Mechanics, Yugoslav Society of Mechanics, 24, 29–54.

    MATH  Google Scholar 

  64. Cuckovic-Dzodzo, D. M., Dzodzo, M. B., & Pavlovic, M. D. (1999). Laminar natural convection in a fully partitioned enclosure containing fluid with nonlinear thermophysical properties. International Journal of Heat and Fluid Flow, 20, 614–623. https://doi.org/10.1016/s0142-727x(99)00053-3.

    Article  MATH  Google Scholar 

  65. De Vahl Davis, G. (1983). Natural convection of air in a square cavity: A bench mark numerical solution. International Journal for Numerical Methods in Fluids, 3, 249–264. https://doi.org/10.1002/fld.1650030305.

    Article  MATH  Google Scholar 

  66. Hortmann, M., Peric, M., & Scheurerer, G. (1990). Finite volume multigrid prediction of laminar natural convection: Bench-mark solutions. International Journal for Numerical Methods in Fluids, 11, 189–207. https://doi.org/10.1002/fld.1650110206.

    Article  MATH  Google Scholar 

  67. Gray, D. D., & Giorgini, A. (1976). The validity of the Boussinesq approximation for liquids and gases. International Journal of Heat and Mass Transfer, 19, 545–551. https://doi.org/10.1016/0017-9310(76)90168-x.

    Article  MATH  Google Scholar 

  68. Graham, A. D., & Mallinson, G. D. (1977). Three-dimensional convection in an inclined differentially heated box. In 6th Australasian Hydraulics and Fluid Mechanics Conference, Adelaide, Australia, 5–9 December 1977 (pp. 467–476).

    Google Scholar 

  69. Mallinson, G. D., & De Vahl Davis, G. (1977). Three-dimensional natural convection in a box: a numerical study. Journal of Fluid Mechanics, 83, 1–31. https://doi.org/10.1017/s0022112077001013.

    Article  Google Scholar 

  70. De Vahl Davis, G., & Jones, I. P. (1983). Natural convection in a square cavity: A comparison exercise. International Journal for Numerical Methods in Fluids, 3, 227–248. https://doi.org/10.1002/fld.1650030304.

    Article  MATH  Google Scholar 

  71. Ciofalo, M., & Karayiannis, T. G. (1991). Natural convection heat transfer in a partially or completely portioned vertical rectangular enclosure. International Journal of Heat and Mass Transfer, 34, 167–179. https://doi.org/10.1016/0017-9310(91)90184-g.

    Article  Google Scholar 

  72. Rai, M. M. (1985). Navier-stokes simulations of rotor-stator interaction using patched and overlaid grids. In AIAA 7th Computational Fluid Dynamics Conference, July 15–17, Cincinnati, Ohio, USA (pp. 282–289). https://doi.org/10.2514/6.1985-1519.

  73. Thoman, D. C., & Szewczyk, A. A. (1969). Time dependent viscous flow over a circular cylinder. The Physics of Fluids, Supplement II, 12, 76–87. https://doi.org/10.1063/1.1692472.

    Article  MATH  Google Scholar 

  74. Belotserkovskii, O. M., & Davydov, Yu M. (1982). The large-particle method in gas dynamics—A computational experiment. Moscow: Izdatel’stvo Nauka. (in Russian).

    Google Scholar 

  75. Davydov, Yu. M. (1971). Calculation by the “coarse particle” method of the flow past a body of arbitrary shape. USSR Computational Mathematics and Mathematical Physics, 11, 241–271. https://doi.org/10.1016/0041-5553(71)90026-7.

    Article  Google Scholar 

  76. Kelly, D. M., Chen, Q., & Zang, J. (2015). PICIN: A particle-in-cell solver for incompressible free surface flows with two-way fluid-solid coupling. SIAM Journal on Scientific Computing, 37, B403–B424. https://doi.org/10.1137/140976911.

    Article  MathSciNet  MATH  Google Scholar 

  77. Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. https://doi.org/10.1016/0021-9991(81)90145-5.

    Article  MATH  Google Scholar 

  78. Smith, L. D., Conner, M. E., Liu, B., Dzodzo, M. B., Paramonov, D. V., Beasley, D. E., et al. (2002). Benchmarking computational fluid dynamics for application to PWR fuel. In 10th International Conference on Nuclear Engineering, Paper No. ICONE10–22475, Arlington, VA, USA, April 14–18, 2002 (Vol. 3, pp. 823–830). https://doi.org/10.1115/icone10-22475.

  79. Carrilho, L. A., & Dzodzo, M. B. (2018). Conjugated heat transfer model for ribbed surface convection enhancement and solid body temperature fluctuations. In A. P. Silva Freire, K. Hanjalic, K. Suga, D. Borello, M. Haziabdic (Eds.), Turbulence, heat and mass transfer. Proceedings of the Ninth International Symposium on Turbulence, Heat and Mass Transfer, Rio de Janeiro, Brazil, 10–13 July 2018 (pp. 383–386). New York, Wallingford: Begell House Inc.

    Google Scholar 

  80. Dzodzo, M. B. (1995). A multiblock procedure for the prediction of the fluid flow inside the complex three dimensional domains with specified pressures on the open boundaries. In D. Hui & S. Michaelides (Eds.), SES’95 Society of Engineering Science 32nd Annual Technical Meeting, University of New Orleans, New Orleans, Louisiana, USA, October 29–November 2, 1995 (pp. 729–730).

    Google Scholar 

  81. Braun, M. J., & Dzodzo, M. B. (1997). Three-dimensional flow and pressure patterns in a hydrostatic journal bearing pocket. Journal of Tribology, 119, 711–719. https://doi.org/10.1115/1.2833875.

    Article  Google Scholar 

  82. Dzodzo, M. B., & Braun, M. J. (1996). A three dimensional model for a hydrostatic bearing. In AIAA 96-3104, 32nd AIAA/ASME/SEA/ASEE Joint Propulsion Conference, Lake Buena Vista, Florida, USA, July 1–3 1996. https://doi.org/10.2514/6.1996-3104.

  83. Cumber, P. S., Fairweather, M., Falle, S. A. E. G., & Giddings, J. R. (1997). Predictions of impacting sonic and supersonic jets. Journal of Fluids Engineering, 119, 83–89. https://doi.org/10.1115/1.2819123.

    Article  Google Scholar 

  84. Cumber, P. S., Fairweather, M., Falle, S. A. E. G., & Giddings, J. R. (1998). Body capturing in impacting supersonic flows. International Journal of Heat and Fluid Flow, 19, 23–30. https://doi.org/10.1016/s0142-727x(97)10011-x.

    Article  Google Scholar 

  85. Olivieri, D. A., Fairweather, M., & Falle, S. A. E. G. (2010). Adaptive mesh refinement applied to the scalar transported PDF equation in a turbulent jet. International Journal for Numerical Methods in Engineering, 84, 434–447. https://doi.org/10.1002/nme.2899.

    Article  MathSciNet  MATH  Google Scholar 

  86. Carslaw, H. C., & Jaeger, J. C. (1959). Conduction of heat in solids (2nd ed.). Oxford University Press.

    Google Scholar 

  87. Leonard, B. P. (1980). The QUICK algorithm: A uniformly third-order finite-difference method for highly convective flows. In K. Morgan, C. Taylor, & C. A. Brebbia (Eds.), Computer methods in fluids (pp. 159–195). Pentec Press.

    Google Scholar 

  88. Castrejon, A. (1983). Particle tracking subroutines for numerical flow visualization. PDR/CFDU IC/10 Report, Computational Fluid Dynamics Unit, Imperial College of Science and Technology, London.

    Google Scholar 

  89. Castrejon, A., & Andrews, M. J. (1986). A procedure for calculating moving-interface flows with Phoenics-84. In N. C. Markatos, M. Cross, D. G. Tatchell, & N. Rhodes (Eds.), Numerical simulation of fluid flow and heat/mass transfer processes. Lecture notes in engineering (Vol. 18, pp. 433–443). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-82781-5_34.

    Google Scholar 

  90. Castrejon, A., & Spalding, D. B. (1988). An experimental and theoretical study of transient free-convection flow between horizontal concentric cylinders. International Journal of Heat and Mass Transfer, 31, 273–284 (1988). https://doi.org/10.1016/0017-9310(88)90010-5.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor Brian D. Spalding for guidance throughout the specialization at Imperial College, and for the privilege to experience a unique educational approach resulting in step-by-step gradual increase of the complexity and challenge of the problems to be solved. At the same time, giving me the freedom and time to follow intuition, search literature, and explore alternative ways instead of just recommending certain courses. The author would like to thank Dr. W. M. Pun for his encouragement and guidance throughout the work on the second example which was performed in connection with U.K. Department of Environment contract (PECD 7/9/322). The author is thankful to the British Council for providing the fellowship for study at the Imperial College in London, England, U.K., and to the Community of Science and Education of the Socialistic Republic of Serbia for the financial support of my family in Belgrade, Serbia, Yugoslavia, during the 1985/86 school year.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milorad B. Dzodzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dzodzo, M.B. (2020). Examples of Decompositions for Time and Space Domains and Discretization of Equations for General Purpose Computational Fluid Dynamics Programs and Historical Perspective of Some Key Developments. In: Runchal, A. (eds) 50 Years of CFD in Engineering Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-15-2670-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2670-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2669-5

  • Online ISBN: 978-981-15-2670-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics