Skip to main content

Vibration Control of a Flexible Aerial Refueling Hose with Input Saturation

  • Chapter
  • First Online:
PDE Modeling and Boundary Control for Flexible Mechanical System

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 488 Accesses

Abstract

In Chap. 5, we developed a PDE model for a flexible aerial refueling hose system during coupling. As we know, a hose-drogue aerial refueling system consists of a flexible hose and an active drogue control actuator, which are the most universal refueling equipments of probe-drogue refueling (PDR). The probe and drogue systems are comparatively simpler and more compact than the flying boom, and their arrangement on the tanker enables multiple aircraft to be refueled simultaneously. The significant drawback is that PDR requires a skillful piloting technique of maneuvering a probe into the center of a moving drogue with an acceptable closure rate. However, due to the flexible property of the hose, the deflection of the flexible hose has a significant influence on the dynamics and control performance of the AAR, which brings difficulties to the coupling. In order to solve this problem, we will establish a model for a flexible aerial refueling hose system before coupling, and develop an efficient boundary control scheme to suppress vibrations. Moreover, considering that common active drogue control actuators which consists of a set of aerodynamic control surface [5, 7] or other kinds of controllable drogues [6] cannot provide enough control input, which degrades the performance of the control system or leads to the instability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He W, Ge SS (2016) Cooperative control of a nonuniform gantry crane with constrained tension. Automatica 66:146–154

    Article  MathSciNet  Google Scholar 

  2. He W, Zhang S (2016) Control design for nonlinear flexible wings of a robotic aircraft. IEEE Trans Control Syst Technol 25(1):351–357

    Article  Google Scholar 

  3. He W, Zhang S, Ge SS (2014) Adaptive control of a flexible crane system with the boundary output constraint. IEEE Trans Ind Electron 61(8):4126–4133

    Article  Google Scholar 

  4. Jin F-F, Guo B-Z (2015) Lyapunov approach to output feedback stabilization for the Euler-Bernoulli beam equation with boundary input disturbance. Automatica 52:95–102

    Article  MathSciNet  Google Scholar 

  5. Ro K, Kuk T, Kamman JW (2010) Active control of aerial refueling hose-drogue systems. In: AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario, Canada, p 8400

    Google Scholar 

  6. Thomas PR, Bhandari U, Bullock S, Richardson TS, Du Bois JL (2014) Advances in air to air refuelling. Prog Aerosp Sci 71:14–35

    Article  Google Scholar 

  7. Williamson WR, Reed E, Glenn GJ, Stecko SM, Musgrave J, Takacs JM (2010) Controllable drogue for automated aerial refueling. J Aircr 47(2):515–527

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijie Liu .

Appendices

Appendix 1: Proof of Lemma 6.1

Proof

To motivate the followings, we first focus our attention on the term \({{V}_{2}}(t)\). It satisfies the following inequality

$$ \left| {{V}_{2}}(t)\right| \le \alpha \rho L\int _{0}^{L}{{w_{t}^{2}}(x,t)dx}+\alpha \rho L\int _{0}^{L}{{{\left[ {w_{x}}(x,t)\right] }^{2}}dx}\le {{\beta }_{1}}{{V}_{1}}(t)$$

where \({{\beta }_{1}}=\frac{2\alpha \rho L}{\beta \min \left( \rho ,{{P}_{\min }}\right) }\). We then obtain

$$ -{{\beta }_{1}}{{V}_{1}}(t)\le {{V}_{2}}(t)\le {{\beta }_{1}}{{V}_{1}}(t) $$

Assuming that \(\alpha \) is a small positive weighting constant satisfying \(0<\alpha <\frac{\beta \min \left( \rho ,{{P}_{\min }}\right) }{2\rho L}\), we can obtain \(0<{{\beta }_{1}}<1\), and

$$\begin{aligned} {{\beta }_{2}}\left( {{V}_{1}}(t)+{{V}_{b}}(t)\right) \le V(t)\le {{\beta }_{3}}\left( {{V}_{1}}(t)+{{V}_{b}}(t)\right) \end{aligned}$$
(6.34)

where \({{\beta }_{2}}=\min \left( 1-{{\beta }_{1}},1\right) =1-{{\beta }_{1}}\) and \({{\beta }_{3}}=\max \left( 1+{{\beta }_{1}},1\right) =1+{{\beta }_{1}}\).

Differentiating Eq. (6.31) with respect to time, we have

$$\begin{aligned} \dot{V}(t)={{\dot{V}}_{1}}(t)+{{\dot{V}}_{2}}(t)+{{\dot{V}}_{b}}(t) \end{aligned}$$
(6.35)

The term \({{\dot{V}}_{1}}(t)\) is rewritten as

$$ {{\dot{V}}_{1}}(t)={{\dot{V}}_{11}}+{{\dot{V}}_{12}}+{{\dot{V}}_{13}}$$

where

$$\begin{aligned} {{\dot{V}}_{11}}&=\beta \rho \int _{0}^{L}{{w_{t}}(x,t){w_{tt}}(x,t)dx}\end{aligned}$$
(6.36)
$$\begin{aligned} {{\dot{V}}_{12}}&=\beta \int _{0}^{L}{P(x,t){w_{x}}\left( x,t\right) {{w_{xt}}}\left( x,t\right) dx}\end{aligned}$$
(6.37)
$$\begin{aligned} {{\dot{V}}_{13}}&=\frac{\beta }{2}\int _{0}^{L}{{P_{t}}(x,t){{\left[ {w_{x}}\left( x,t\right) \right] }^{2}}dx} \end{aligned}$$
(6.38)

Substituting Eq. (6.8) into (6.36), we get

$$\begin{aligned} {{{\dot{V}}}_{11}}&=\beta \rho \int _{0}^{L}{{w_{t}}(x,t){w_{tt}}(x,t)dx}\\&=\beta \int _{0}^{L}{{w_{t}}(x,t)\left( {P_{x}}(x,t){w_{t}}\left( x,t\right) +P(x,t){w_{xx}}\left( x,t\right) +Q(x,t)\right) dx}\end{aligned}$$

and integrating Eq. (6.37) by parts with the boundary conditions, we obtain

$$\begin{aligned} {{{\dot{V}}}_{12}}&=\beta \left[ P(L,t){w_{x}}\left( L,t\right) {w_{t}}\left( L,t\right) -P(0,t){w_{x}}\left( 0,t\right) {w_{t}}\left( 0,t\right) \right] \\&-\beta \int _{0}^{L}{{w_{t}}\left( x,t\right) {P_{x}}(x,t){w_{x}}\left( x,t\right) dx}\\&-\beta \int _{0}^{L}{{w_{t}}\left( x,t\right) P(x,t){w_{xx}}\left( x,t\right) dx}\end{aligned}$$

Then, we have

$$\begin{aligned} {{{\dot{V}}}_{1}}(t)&=\beta \int _{0}^{L}{{w_{t}}(x,t)Q(x,t)dx}+\frac{\beta }{2}\int _{0}^{L}{{P_{t}}(x,t){{\left[ {w_{x}}\left( x,t\right) \right] }^{2}}dx}\nonumber \\&+\frac{\beta P(L,t)}{2}\left[ z_{2}^{2}-{{\left( {w_{x}}\left( L,t\right) \right) }^{2}}-{{\left( {w_{t}}\left( L,t\right) \right) }^{2}-c}_{1}^{2}w^{2}(L,t)\right] \nonumber \\&-\beta c_{1}P(L,t){w_{t}}\left( L,t\right) w\left( L,t\right) -\beta c_{1}P(L,t){w_{x}}\left( L,t\right) w\left( L,t\right) \end{aligned}$$
(6.39)

According to Lemma 2.4, we obtain

$$\begin{aligned} {{{\dot{V}}}_{1}}(t)&\le \frac{\beta }{{{\sigma }_{1}}}\int _{0}^{L}{{w_{t}^{2}}(x,t)dx+}\beta {{\sigma }_{1}}\int _{0}^{L}{{{Q}^{2}}(x,t)dx}\nonumber \\&+\frac{\beta }{2}\int _{0}^{L}{{P_{t}}(x,t){{\left[ {w_{x}}\left( x,t\right) \right] }^{2}}dx}-\beta c_{1}P(L,t){w_{t}}\left( L,t\right) w\left( L,t\right) \nonumber \\&+\frac{\beta P(L,t)}{2}\left[ z_{2}^{2}-{{\left( {w_{x}}\left( L,t\right) \right) }^{2}}-{{\left( {w_{t}}\left( L,t\right) \right) }^{2}-c}_{1}^{2}w^{2}(L,t)\right] \nonumber \\&-\beta c_{1}P(L,t){w_{x}}\left( L,t\right) w\left( L,t\right) \end{aligned}$$
(6.40)

where \({{\sigma }_{1}}\) is a positive constant.

To go on, the term \({{\dot{V}}_{2}}(t)\) is rewritten as

$$\begin{aligned} {{\dot{V}}_{2}}(t)={{\dot{V}}_{21}}+{{\dot{V}}_{22}}+{{\dot{V}}_{23}}+{{\dot{V}}_{24}}\end{aligned}$$
(6.41)

where

$$\begin{aligned} {{\dot{V}}_{21}}&=\alpha \int _{0}^{L}\left( {x-L}\right) {{w_{x}}(x,t){P_{x}}(x,t){w_{x}}\left( x,t\right) dx}\end{aligned}$$
(6.42)
$$\begin{aligned} {{\dot{V}}_{22}}&=\alpha \int _{0}^{L}\left( {x-L}\right) {{w_{x}}(x,t)P(x,t){w_{xx}}\left( x,t\right) dx}\end{aligned}$$
(6.43)
$$\begin{aligned} {{\dot{V}}_{23}}&=\alpha \int _{0}^{L}\left( {x-L}\right) {{w_{x}}(x,t)Q(x,t)dx}\end{aligned}$$
(6.44)
$$\begin{aligned} {{\dot{V}}_{24}}&=\alpha \int _{0}^{L}{\rho \left( {x-L}\right) {w_{t}}(x,t){{w_{xt}}}(x,t)dx}\end{aligned}$$
(6.45)

Using the boundary conditions and integrating Eq. (6.43) by parts, we get

$$\begin{aligned} {{{\dot{V}}}_{22}}&=-\alpha \int _{0}^{L}{{w_{x}}(x,t)P(x,t){w_{x}}\left( x,t\right) dx}\nonumber \\&-\alpha \int _{0}^{L}\left( {x-L}\right) {{w_{x}}(x,t){P_{x}}(x,t){w_{x}}\left( x,t\right) dx}\nonumber \\&-\alpha \int _{0}^{L}\left( {x-L}\right) {{w_{xx}}(x,t)P(x,t){w_{x}}\left( x,t\right) dx}\end{aligned}$$
(6.46)

Combining (6.43) and (6.46), we have

$$\begin{aligned} {{{\dot{V}}}_{22}}&=-\frac{\alpha }{2}\int _{0}^{L}{P(x,t){{\left[ {w_{x}}\left( x,t\right) \right] }^{2}}dx}\end{aligned}$$
(6.47)
$$\begin{aligned}&-\frac{\alpha }{2}\int _{0}^{L}\left( {x-L}\right) {{P_{x}}(x,t){{\left[ {w_{x}}\left( x,t\right) \right] }^{2}}dx}\end{aligned}$$
(6.48)

According to Lemma 2.4, we obtain

$$\begin{aligned} {{\dot{V}}_{23}}\le \frac{\alpha L}{{{\sigma }_{2}}}\int _{0}^{L}{{{Q}^{2}}(x,t)dx}+\alpha L{{\sigma }_{2}}\int _{0}^{L}{{{\left[ {w_{x}}(x,t)\right] }^{2}}dx}\end{aligned}$$
(6.49)

where \({{\sigma }_{2}}\) is a positive constant. Integrating (6.45) by parts, we obtain

$$ {{{\dot{V}}}_{24}}=-\alpha \rho \int _{0}^{L}{{w_{t}^{2}}(x,t)dx}-\alpha \rho \int _{0}^{L}\left( {x-L}\right) {{w_{t}}(x,t){{w_{xt}}}(x,t)dx}$$

Considering (6.45), we then get

$$\begin{aligned} {{\dot{V}}_{24}}=-\frac{\alpha \rho }{2}\int _{0}^{L}{{w_{t}^{2}}(x,t)dx}\end{aligned}$$
(6.50)

Substituting (6.42), (6.48), (6.49) and (6.50) into (6.41), we obtain

$$\begin{aligned} {{{\dot{V}}}_{2}}(t)&\le \alpha \int _{0}^{L}\left( {x-L}\right) {{P_{x}}(x,t){{\left[ {w_{x}}\left( x,t\right) \right] }^{2}}dx} \nonumber \\&-\frac{\alpha }{2}\int _{0}^{L}{P(x,t){{\left[ {w_{x}}\left( x,t\right) \right] }^{2}}dx}+\alpha L{{\sigma }_{2}}\int _{0}^{L}{{{\left[ {w_{x}}(x,t)\right] }^{2}}dx}\nonumber \\&-\frac{\alpha }{2}\int _{0}^{L}\left( {x-L}\right) {{P_{x}}(x,t){{\left[ {w_{x}}\left( x,t\right) \right] }^{2}}dx}\nonumber \\&+\frac{\alpha L}{{{\sigma }_{2}}}\int _{0}^{L}{{{Q}^{2}}(x,t)dx} -\frac{\alpha \rho }{2}\int _{0}^{L}{{{w}_{t}^{2}}(x,t)dx}\end{aligned}$$
(6.51)

Substituting (6.30), (6.40) and (6.51) into (6.35), we obtain

$$\begin{aligned} \dot{V}&={{{\dot{V}}}_{1}}+{{{\dot{V}}}_{2}}+{{{\dot{V}}}_{b}}\nonumber \\&\le -\frac{1}{2}\int _{0}^{L}{\left[ \alpha P(x,t)-\alpha (x-L){P_{x}}(x,t)\right] {{\left[ {w_{x}}\left( x,t\right) \right] }^{2}}dx}\nonumber \\&-\frac{1}{2}\int _{0}^{L}{\left[ -2\alpha L{{\sigma }_{2}}-\beta {P_{t}}(x,t)\right] {{\left[ {w_{x}}\left( x,t\right) \right] }^{2}}dx}\nonumber \\&-\left( \frac{\alpha \rho }{2}-\frac{\beta }{{{\sigma }_{1}}}\right) \int _{0}^{L}{{w_{t}^{2}}(x,t)dx}\nonumber \\&-\left( {{c}_{1}}+\frac{\beta P(L,t)c_{1}^{2}}{2}-\beta P(L,t)c_{1}^{2}-\frac{1}{{{\sigma }_{3}}}\right) z_{1}^{2}\nonumber \\&-\left( {{c}_{2}}-\frac{\beta P(L,t)}{2}\right) z_{2}^{2}-{{c}_{3}}z_{3}^{2}-\beta P(L,t)\frac{{w_{t}^{2}}(L,t)}{2}\nonumber \\&-\left( \frac{\beta P(L,t)}{2}-{{\sigma }_{3}}\right) {{\left[ {w_{x}}(L,t)\right] }^{2}}\nonumber \\&+\frac{1}{{{\gamma }_{\chi }}}\left( \xi N\left( \chi \right) -1\right) \dot{\chi }+\frac{1}{2l}\bar{d}^{2}\nonumber \\&+\left( \frac{\alpha L}{{{\sigma }_{2}}}+{{\sigma }_{1}}\beta \right) \int _{0}^{L}{{{Q}^{2}}(x,t)dx} \end{aligned}$$
(6.52)

We design parameters \(\alpha \) and \(\beta \) to satisfy the following inequality:

$$ \alpha {{P}_{\min }}-\beta {{{P}}_{t\max }}-\alpha L{{{P}}_{x\max }}-2\alpha L{{\sigma }_{2}}\ge \delta $$

\(\forall (x,t)\in \left[ 0,L \right] \times \left[ 0,\infty \right) \), for a positive constant \(\delta \), and the following conditions:

$$\begin{aligned}&\frac{\alpha \rho }{2}-\frac{\beta }{{{\sigma }_{1}}}>0\\&{{c}_{1}}+\frac{\beta {{P}_{\min }}c_{1}^{2}}{2}-\beta {{P}_{\max }}c_{1}^{2}-\frac{1}{{{\sigma }_{3}}}>0\\&{{c}_{2}}-\frac{\beta {{P}_{\max }}}{2}\ge 0\\&\frac{\beta {{P}_{\min }}}{2}-{{\sigma }_{3}}\ge 0 \end{aligned}$$

Equation (6.52) can be rewritten as

$$\begin{aligned} \dot{V}(t)&\le -{{\gamma }_{1}}\frac{\beta }{2}\int _{0}^{L}{P(x,t){{\left[ {w_{x}}\left( x,t\right) \right] }^{2}}dx}-{{\gamma }_{2}}\frac{\beta \rho }{2}\int _{0}^{L}{{w_{t}^{2}}(x,t)dx}\nonumber \\&-{{\gamma }_{3}}\frac{1}{2}z_{1}^{2}-{{\gamma }_{4}}\frac{m}{2}z_{2}^{2}-{{\gamma }_{5}}\frac{m}{2}z_{3}^{2}\nonumber \\&+\frac{1}{{{\gamma }_{\chi }}}\left( \xi N\left( \chi \right) -1\right) \dot{\chi }+\varepsilon \end{aligned}$$
(6.53)

where

$$\begin{aligned} {{\gamma }_{1}}&=\frac{\delta }{\beta {{P}_{\max }}}\\ {{\gamma }_{2}}&=\left( \frac{\alpha }{\beta }-\frac{2}{{{\sigma }_{1}}\rho } \right) \\ {{\gamma }_{3}}&=2\left( {{c}_{1}}+\frac{\beta {{P}_{\min }}c_{1}^{2}}{2}-\beta {{P}_{\max }}c_{1}^{2}-\frac{1}{{{\sigma }_{3}}} \right) \\ {{\gamma }_{4}}&=\frac{2}{m}\left( {{c}_{2}}-\frac{\beta {{P}_{\max }}}{2} \right) \\ {{\gamma }_{5}}&=\frac{2}{m}{{c}_{3}}\\ \varepsilon&=\frac{1}{2l}\bar{d}^{2}+\left( \frac{\alpha L}{{{\sigma }_{2}}}+{{\sigma }_{1}}\beta \right) LQ_{\max }^{2} \end{aligned}$$

We further obtain

$$\begin{aligned} \dot{V}(t)\le -{{\lambda }_{1}}\left[ {{V}_{1}}(t)+{{V}_{b}}(t)\right] +\frac{1}{{{\gamma }_{\chi }}}\left( \xi N\left( \chi \right) -1\right) \dot{\chi }+\varepsilon \end{aligned}$$
(6.54)

where \({{\lambda }_{1}}=\min \left( {{\gamma }_{1}},{{\gamma }_{2}},{{\gamma }_{3}},{{\gamma }_{4}},{{\gamma }_{5}}\right) \).

Combining (6.34) and (6.54), we have

$$\begin{aligned} \dot{V}(t)\le -\lambda V(t)+\frac{1}{{{\gamma }_{\chi }}}\left( \xi N\left( \chi \right) -1\right) \dot{\chi }+\varepsilon \end{aligned}$$
(6.55)

where \(\lambda ={{{\lambda }_{1}}}/{{{\beta }_{3}}}\;>0\).

Then multiplying Eq. (6.55) by \({{e}^{\lambda t}}\), we obtain

$$\begin{aligned} \frac{\partial }{\partial t}\left( \left( V(t){{e}^{\lambda t}}\right) \right) \le \varepsilon {{e}^{\lambda t}}+\frac{1}{{{\gamma }_{\chi }}}\left( \xi N\left( \chi \right) -1\right) \dot{\chi }{{e}^{\lambda t}} \end{aligned}$$
(6.56)

Integrating of the inequality (6.56), we have

$$\begin{aligned} V(t)&\le V(0){{e}^{-\lambda t}}+\frac{\varepsilon }{\lambda }\left( 1-{{e}^{-\lambda t}}\right) \nonumber \\&+\frac{{{e}^{-\lambda t}}}{{{\gamma }_{\chi }}}\int _{0}^{t}{\left( \xi N\left( \chi \right) -1\right) \dot{\chi }{{e}^{\lambda \tau }}d\tau }\nonumber \\&\le V(0){{e}^{-\lambda t}}+\frac{\varepsilon _{0}}{\lambda }\end{aligned}$$
(6.57)

where \(\varepsilon _{0}=\varepsilon +\frac{\lambda }{{{\gamma }_{\chi }}}\int _{0}^{t}{\left( \xi N\left( \chi \right) -1\right) \dot{\chi }{{e}^{-\lambda \left( t-\tau \right) }}d\tau }\).

Applying Lemma 2.8, we can conclude that V(t), \(\chi \) and \(\int _{0}^{t}{\left( \xi N\left( \chi \right) -1 \right) \dot{\chi }d\tau }\) are bounded on \(\left[ 0,t \right) \).

This completes the proof.

Appendix 2: Proof of Theorem 6.1

Proof

According to Lemma 6.1, we can conclude that \({{z}_{1}}\), \({{z}_{2}}\), \({{z}_{3}}\), w(xt), \({w_{t}}(x,t)\) and \({w_{x}}(x,t)\) are all bounded.

Note that

$$\begin{aligned} \left| u_{g}\left( {{u}_{0}}\right) \right|&={{u}_{M}}\left| \tanh \left( \frac{{{u}_{0}}}{{{u}_{M}}}\right) \right| \le {{u}_{M}}\end{aligned}$$
(6.58)
$$\begin{aligned} \left| \frac{\partial u_{g}\left( {{u}_{0}}\right) }{\partial {{u}_{0}}}\right|&=\left| \frac{4}{{{\left( {{e}^{{{u}_{0}}/{{u}_{M}}}}+{{e}^{-{{u}_{0}}/{{u}_{M}}}}\right) }^{2}}}\right| \le 1\end{aligned}$$
(6.59)
$$\begin{aligned} \left| \frac{\partial u_{g}\left( {{u}_{0}}\right) }{\partial {{u}_{0}}}{{u}_{0}}\right|&=\left| \frac{4{{u}_{0}}}{{{\left( {{e}^{{{u}_{0}}/{{u}_{M}}}}+{{e}^{-{{u}_{0}}/{{u}_{M}}}}\right) }^{2}}}\right| \le \frac{{{u}_{M}}}{2}\end{aligned}$$
(6.60)

Then we can obtain that \(\bar{\omega }\) is bounded from (6.58)–(6.60) and (6.26). This further implies that \(\omega \) and \(u_{0}(t)\) are bounded.

Combining with (6.32) and according to Lemma 2.5, we have

$$\begin{aligned}&\frac{\beta {{P}_{\min }}}{2L}{{w}^{2}}(x,t)\le \frac{\beta }{2}\int _{0}^{L}{P(x,t){{\left[ {w_{x}}\left( x,t\right) \right] }^{2}}dx}\le {{V}_{1}}(t)\nonumber \\&\le {{V}_{1}}(t)+{{V}_{b}}(t)\le \frac{V(t)}{{{\beta }_{2}}}\end{aligned}$$
(6.61)

Then we get

$$\begin{aligned} w(x,t)\le \sqrt{\frac{2l(t)}{\beta {{P}_{\min }}{{\beta }_{2}}}\left( V(0){{e}^{-\lambda t}}+\frac{{{\varepsilon }_{0}}}{\lambda }\right) }\end{aligned}$$
(6.62)

It follows that, \(\underset{t\rightarrow \infty }{\mathop {\lim }}\,\left| w(x,t)\right| \le \sqrt{\frac{2L\varepsilon _{0}}{\beta {{P}_{\min }}{{\beta }_{2}}\lambda }},\forall (x,t)\in [0,L]\times [0,\infty ),\) so w(xt) is uniformly ultimate bounded.

This completes the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Tsinghua University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Z., Liu, J. (2020). Vibration Control of a Flexible Aerial Refueling Hose with Input Saturation. In: PDE Modeling and Boundary Control for Flexible Mechanical System. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2596-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2596-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2595-7

  • Online ISBN: 978-981-15-2596-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics