Skip to main content

Identification of Sirt3 as an ‘Eraser’ for Histone Lysine Crotonylation Marks Using a Chemical Proteomics Approach

  • Chapter
  • First Online:
  • 219 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Increasing evidences have indicated histone posttranslational modifications (PTMs) play crucial roles in regulating a wide range of chromatin-templated nuclear processes, such as gene transcription, DNA replication and DNA damage repair [1]. PTMs on histones have been proposed to serve as histone code that provides epigenetic information from a mother cell to daughter cells [2]. Histone code is under control of opposing enzymes that ‘write’ or ‘erase’ modifications on histones [1, 3]. Meanwhile, this epigenetic code could be translated by ‘reader’ proteins, which can recognize specific histone modifications, into biological readout, without alteration of genetic information [4, 5].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705. https://doi.org/10.1016/j.cell.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  2. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080. https://doi.org/10.1126/science.1063127

    Article  CAS  PubMed  Google Scholar 

  3. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638. https://doi.org/10.1016/j.cell.2007.02.006

    Article  CAS  PubMed  Google Scholar 

  4. Seet BT, Dikic I, Zhou MM, Pawson T (2006) Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol 7:473–483. https://doi.org/10.1038/nrm1960

    Article  CAS  PubMed  Google Scholar 

  5. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14:1025–1040. https://doi.org/10.1038/nsmb1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tan M et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028. https://doi.org/10.1016/j.cell.2011.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Montellier E, Rousseaux S, Zhao Y, Khochbin S (2012) Histone crotonylation specifically marks the haploid male germ cell gene expression program: post-meiotic male-specific gene expression. BioEssays News Rev Mol Cell Dev Biol 34:187–193. https://doi.org/10.1002/bies.201100141

    Article  CAS  Google Scholar 

  8. Madsen AS, Olsen CA (2012) Profiling of substrates for zinc-dependent lysine deacylase enzymes: HDAC3 exhibits decrotonylase activity in vitro. Angew Chem 51:9083–9087. https://doi.org/10.1002/anie.201203754

    Article  CAS  Google Scholar 

  9. Feldman JL, Baeza J, Denu JM (2013) Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem 288:31350–31356. https://doi.org/10.1074/jbc.c113.511261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li X, Foley EA, Molloy KR, Li Y, Chait BT, Kapoor TM (2012) Quantitative chemical proteomics approach to identify post-translational modification-mediated protein-protein interactions. J Am Chem Soc 134:1982–1985. https://doi.org/10.1021/ja210528v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li X, Kapoor TM (2010) Approach to profile proteins that recognize post-translationally modified histone “tails”. J Am Chem Soc 132:2504–2505. https://doi.org/10.1021/ja909741q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800. https://doi.org/10.1038/35001622

    Article  CAS  PubMed  Google Scholar 

  13. Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R (2000) The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Nal Acad Sci U S A 97:5807–5811. https://doi.org/10.1073/pnas.110148297

    Article  CAS  Google Scholar 

  14. Sauve AA, Wolberger C, Schramm VL, Boeke JD (2006) The biochemistry of sirtuins. Annu Rev Biochem 75:435–465. https://doi.org/10.1146/annurev.biochem.74.082803.133500

    Article  CAS  PubMed  Google Scholar 

  15. Tanner KG, Landry J, Sternglanz R, Denu JM (2000) Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci U S A 97:14178–14182. https://doi.org/10.1073/pnas.250422697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jin L et al (2009) Crystal structures of human SIRT3 displaying substrate-induced conformational changes. J Biol Chem 284:24394–24405. https://doi.org/10.1074/jbc.m109.014928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hirschey MD, Shimazu T, Huang JY, Schwer B, Verdin E (2011) SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism. Cold Spring Harb Symp Quant Biol 76:267–277. https://doi.org/10.1101/sqb.2011.76.010850

    Article  CAS  PubMed  Google Scholar 

  18. Shi T, Wang F, Stieren E, Tong Q (2005) SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 280:13560–13567. https://doi.org/10.1074/jbc.m414670200

    Article  CAS  PubMed  Google Scholar 

  19. Hirschey MD et al (2011) SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell 44:177–190. https://doi.org/10.1016/j.molcel.2011.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scher MB, Vaquero A, Reinberg D (2007) SirT3 is a nuclear NAD + -dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev 21:920–928. https://doi.org/10.1101/gad.1527307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Iwahara T, Bonasio R, Narendra V, Reinberg D (2012) SIRT3 functions in the nucleus in the control of stress-related gene expression. Mol Cell Biol 32:5022–5034. https://doi.org/10.1128/mcb.00822-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bao X et al. (2014) Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach. eLife 3. https://doi.org/10.7554/elife.02999

  23. Liu Z, Yang T, Li X, Peng T, Hang HC, Li XD (2015) Integrative chemical biology approaches for identification and characterization of “erasers” for fatty-acid-acylated lysine residues within proteins. Angew Chem 54:1149–1152. https://doi.org/10.1002/anie.201408763

    Article  CAS  Google Scholar 

  24. Teng YB et al (2015) Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies. Sci Rep 5:8529. https://doi.org/10.1038/srep08529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang H et al (2013) SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496:110–113. https://doi.org/10.1038/nature12038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Du J et al (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334:806–809. https://doi.org/10.1126/science.1207861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rardin MJ et al (2013) SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab 18:920–933. https://doi.org/10.1016/j.cmet.2013.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peng C et al (2011) The first identification of Lysine Malonylation substrates and its regulatory enzyme. Mol cell Proteomics MCP 10(12):M111.012658. https://doi.org/10.1074/mcp.M111.012658

    Article  CAS  PubMed  Google Scholar 

  29. Tan M et al (2014) Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab 19:605–617. https://doi.org/10.1016/j.cmet.2014.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shechter D, Dormann HL, Allis CD, Hake SB (2007) Extraction, purification and analysis of histones. Nat Protoc 2:1445–1457. https://doi.org/10.1038/nprot.2007.202

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiucong Bao .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bao, X. (2020). Identification of Sirt3 as an ‘Eraser’ for Histone Lysine Crotonylation Marks Using a Chemical Proteomics Approach. In: Study on the Cellular Regulation and Function of Lysine Malonylation, Glutarylation and Crotonylation. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-2509-4_5

Download citation

Publish with us

Policies and ethics