Advertisement

The Brain–Heart Crosstalk

  • Anna Teresa MazzeoEmail author
  • Valentina Tardivo
  • Simone Cappio Borlino
  • Diego Garbossa
Chapter
  • 48 Downloads
Part of the Physiology in Clinical Neurosciences – Brain and Spinal Cord Crosstalks book series (PNBSCC)

Abstract

Acute neurocardiogenic injury is a relevant complication occurring after an acute brain injury, especially after subarachnoid haemorrhage, and is associated with an increased risk of morbidity and mortality. The cardiac involvement can be expressed as ECG anomalies (QT interval prolongation, T wave and ST segment anomalies, cardiac arrhythmias), elevation of the serum markers of cardiac injury or regional or global wall motion abnormalities resulting in different grades of heart failure, from mild dysfunction to cardiogenic shock. This cardiac dysfunction, also known as neurogenic stress cardiomyopathy, is usually reversible and functional in origin but is associated with increased morbidity and mortality. In clinical practice, acute neurocardiogenic injury is generally underdiagnosed. This chapter discusses relevant pathophysiological changes occurring at cardiac level after an acute brain injury and the clinical implications of brain–heart crosstalk.

Abbreviations

ACS

Acute coronary syndrome

AIS

Acute ischemic stroke

ANS

Autonomic nervous system

ARs

Adrenergic receptors

AV node

Atrioventricular node

CAD

Coronary artery disease

CBN

Contraction band necrosis

CI

Confidence interval

CM

Cardiomyopathy

CNS

Central nervous system

COMT

Catechol-O-methyl-transferase

ECG

Electrocardiogram

GRK5

G-protein-coupled receptor kinase 5

HR

Hazard ratio

ICH

Intracranial haemorrhage

LV

Left ventricle

LVEF

Left ventricular ejection fraction

NOS

Nitric oxide synthase

NSC

Neurogenic stress cardiomyopathy

NSM

Neurogenic stunned myocardium

RWMA

Regional wall motion abnormality

SA node

Sinoatrial node

SAH

Subarachnoid haemorrhage

TBI

Traumatic brain injury

TNF

Tumour necrosis factor

TTC

Takotsubo cardiomyopathy

Notes

Acknowledgement

This chapter has been supported by San Paolo Grant S1618_L2_MAZA_01.

References

  1. 1.
    Gopinath R, Ayya SS (2018) Neurogenic stress cardiomyopathy: what do we need to know. Ann Card Anaesth 21:228–234PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Prathep S et al (2014) Preliminary report on cardiac dysfunction after isolated traumatic brain injury. Crit Care Med 42:142–147PubMedCrossRefGoogle Scholar
  3. 3.
    Nguyen H, Zaroff JG (2009) Neurogenic stunned myocardium. Curr Neurol Neurosci Rep 9:486–491PubMedCrossRefGoogle Scholar
  4. 4.
    Boland TA, Lee VH, Bleck TP (2015) Stress-induced cardiomyopathy. Crit Care Med 43:686–693PubMedCrossRefGoogle Scholar
  5. 5.
    Ripoll JG, Blackshear JL, Díaz-Gómez JL (2018) Acute Cardiac complications in critical brain disease. Neurosurg Clin N Am 29:281–297PubMedCrossRefGoogle Scholar
  6. 6.
    Biso S et al (2017) A review of neurogenic stunned myocardium. Cardiovasc Psychiatry Neurol:1–6.  https://doi.org/10.1155/2017/5842182
  7. 7.
    Bybee KA, Prasad A (2008) Stress-related cardiomyopathy syndromes. Circulation 118:397–409PubMedCrossRefGoogle Scholar
  8. 8.
    Tsuchihashi K et al (2001) Transient left ventricular apical ballooning without coronary artery stenosis: a novel heart syndrome mimicking acute myocardial infarction. Angina Pectoris-Myocardial Infarction Investigations in Japan. J Am Coll Cardiol 38:11–18PubMedCrossRefGoogle Scholar
  9. 9.
    Kawai S et al (2000) Ampulla cardiomyopathy (‘Takotusbo’ cardiomyopathy)--reversible left ventricular dysfunction: with ST segment elevation. Jpn Circ J 64:156–159PubMedCrossRefGoogle Scholar
  10. 10.
    Ako J, Sudhir K, Farouque HMO, Honda Y, Fitzgerald PJ (2006) Transient left ventricular dysfunction under severe stress: brain-heart relationship revisited. Am J Med 119:10–17PubMedCrossRefGoogle Scholar
  11. 11.
    Mazzeo AT, Micalizzi A, Mascia L, Scicolone A, Siracusano L (2014) Brain-heart crosstalk: The many faces of stress-related cardiomyopathy syndromes in anaesthesia and intensive care. Br J Anaesth 112:803–815PubMedCrossRefGoogle Scholar
  12. 12.
    Wira C III et al (2011) Cardiac complications in acute ischemic stroke. West J Emerg Med 12:414–420PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lee VH, Oh JK, Mulvagh SL, Wijdicks EF (2006) Mechanisms in neurogenic stress cardiomyopathy after aneurysmal subarachnoid hemorrhage. Neurocrit Care 5:243–249PubMedCrossRefGoogle Scholar
  14. 14.
    van der Bilt IAC et al (2009) Impact of cardiac complications on outcome after aneurysmal subarachnoid hemorrhage: a meta-analysis. Neurology 72:635–642PubMedCrossRefGoogle Scholar
  15. 15.
    Zaroff JG et al (2012) Cardiovascular predictors of long-term outcomes after non-traumatic subarachnoid hemorrhage. Neurocrit Care 17:374–381PubMedCrossRefGoogle Scholar
  16. 16.
    Mitchell GAG (1953) The innervation of the heart. Br Heart J 15:159–171PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Pereira VH, Cerqueira JJ, Palha JA, Sousa N (2013) Stressed brain, diseased heart: a review on the pathophysiologic mechanisms of neurocardiology. Int J Cardiol 166:30–37PubMedCrossRefGoogle Scholar
  18. 18.
    Osteraas ND, Lee VH (2017) Neurocardiology. Handb Clin Neurol 140:49–65PubMedCrossRefGoogle Scholar
  19. 19.
    Kent KM, Epstein SE, Cooper T, Jacobowitz DM (1974) Cholinergic innervation of the canine and human ventricular conducting system. Circulation 50:948–955PubMedCrossRefGoogle Scholar
  20. 20.
    Martin P (1977) The influence of the parasympathetic nervous system on atrioventricular conduction. Circ Res 41:593–599PubMedCrossRefGoogle Scholar
  21. 21.
    Yoon BW, Morillo CA, Cechetto DF, Hachinski V (1997) Cerebral hemispheric lateralization in cardiac autonomic control. Arch Neurol 54:741–744PubMedCrossRefGoogle Scholar
  22. 22.
    Barron SA, Rogovski Z, Hemli J (1994) Autonomic consequences of cerebral hemisphere infarction. Stroke 25:113–116PubMedCrossRefGoogle Scholar
  23. 23.
    Ibanez B, Choi BG, Navarro F, Farre J (2005) Tako-tsubo syndrome: a form of spontaneous aborted myocardial infarction? Eur Heart J 27:1509–1510CrossRefGoogle Scholar
  24. 24.
    Nojima Y, Kotani J (2010) Global coronary artery spasm caused Takotsubo cardiomyopathy. J Am Coll Cardiol 55:e17PubMedCrossRefGoogle Scholar
  25. 25.
    Yuki K et al (1991) Coronary vasospasm following subarachnoid hemorrhage as a cause of stunned myocardium. J Neurosurg 75:308–311PubMedCrossRefGoogle Scholar
  26. 26.
    Chang PC, Lee SH, Hung HF, Kaun P, Cheng JJ (1998) Transient ST elevation and left ventricular asynergy associated with normal coronary artery and Tc-99m PYP Myocardial Infarct Scan in subarachnoid hemorrhage. Int J Cardiol 63:189–192PubMedCrossRefGoogle Scholar
  27. 27.
    de Chazal I, Parham WM, Liopyris P, Wijdicks EFM (2005) Delayed cardiogenic shock and acute lung injury after aneurysmal subarachnoid hemorrhage. Anesth Analg 100:1147–1149PubMedCrossRefGoogle Scholar
  28. 28.
    Zaroff JG et al (2000) Regional myocardial perfusion after experimental subarachnoid hemorrhage. Stroke 31:1136–1143PubMedCrossRefGoogle Scholar
  29. 29.
    Kurisu S et al (2002) Tako-tsubo-like left ventricular dysfunction with ST-segment elevation: a novel cardiac syndrome mimicking acute myocardial infarction. Am Heart J 143:448–455PubMedCrossRefGoogle Scholar
  30. 30.
    Dote K, Sato H, Tateishi H, Uchida T, Ishihara M (1991) Myocardial stunning due to simultaneous multivessel coronary spasms: a review of 5 cases. J Cardiol 21:203–214PubMedGoogle Scholar
  31. 31.
    Hilz MJ et al (2011) High NIHSS values predict impairment of cardiovascular autonomic control. Stroke 42:1528–1533PubMedCrossRefGoogle Scholar
  32. 32.
    Myers MG, Norris JW, Hachniski VC, Sole MJ (1981) Plasma norepinephrine in stroke. Stroke 12:200–204PubMedCrossRefGoogle Scholar
  33. 33.
    Naredi S et al (2000) Increased sympathetic nervous activity in patients with nontraumatic subarachnoid hemorrhage. Stroke 31:901–906PubMedCrossRefGoogle Scholar
  34. 34.
    Lyon AR, Rees PS, Prasad S, Poole-Wilson PA, Harding SE (2008) Stress (Takotsubo) cardiomyopathy—a novel pathophysiological hypothesis to explain catecholamine-induced acute myocardial stunning. Nat Clin Pract Cardiovasc Med 5:22–29PubMedCrossRefGoogle Scholar
  35. 35.
    Mertes PM et al (1994) Estimation of myocardial interstitial norepinephrine release after brain death using cardiac microdialysis. Transplantation 57:371–377PubMedCrossRefGoogle Scholar
  36. 36.
    Wittstein IS et al (2005) Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352:539–548PubMedCrossRefGoogle Scholar
  37. 37.
    Bounhoure JP (2012) Takotsubo or stress cardiomyopathy. Cardiovasc Psychiatry Neurol 2012:1–4CrossRefGoogle Scholar
  38. 38.
    Akashi YJ, Nef HM, Möllmann H, Ueyama T (2010) Stress cardiomyopathy. Annu Rev Med 61:271–286PubMedCrossRefGoogle Scholar
  39. 39.
    Izumi Y et al (2009) Effects of metoprolol on epinephrine-induced takotsubo-like left ventricular dysfunction in non-human primates. Hypertens Res 32:339–346PubMedCrossRefGoogle Scholar
  40. 40.
    Novitzky D, Wicomb WN, Cooper DK, Rose AG, Reichart B (1986) Prevention of myocardial injury during brain death by total cardiac sympathectomy in the Chacma baboon. Ann Thorac Surg 41:520–524PubMedCrossRefGoogle Scholar
  41. 41.
    Banki NM et al (2005) Acute neurocardiogenic injury after subarachnoid hemorrhage. Circulation 112:3314–3319PubMedCrossRefGoogle Scholar
  42. 42.
    Masuda T et al (2002) Sympathetic nervous activity and myocardial damage immediately after subarachnoid hemorrhage in a unique animal model. Stroke 33:1671–1676PubMedCrossRefGoogle Scholar
  43. 43.
    Communal C, Singh K, Pimentel DR, Colucci WS (1998) Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 98:1329–1334PubMedCrossRefGoogle Scholar
  44. 44.
    Zaugg M et al (2000) Beta-adrenergic receptor subtypes differentially affect apoptosis in adult rat ventricular myocytes. Circulation 102:344–350PubMedCrossRefGoogle Scholar
  45. 45.
    Kawahara E, Ikeda S, Miyahara Y, Kohno S (2003) Role of autonomic nervous dysfunction in electrocardiographic abnormalities and cardiac injury in patients with acute subarachnoid hemorrhage. Circ J 67:753–756PubMedCrossRefGoogle Scholar
  46. 46.
    Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859PubMedCrossRefGoogle Scholar
  47. 47.
    Mashaly HA, Provencio JJ (2008) Inflammation as a link between brain injury and heart damage: the model of subarachnoid hemorrhage. Cleve Clin J Med 75(Suppl 2):S26–S30PubMedCrossRefGoogle Scholar
  48. 48.
    Mathiesen T, Edner G, Ulfarsson E, Andersson B (1997) Cerebrospinal fluid interleukin-1 receptor antagonist and tumor necrosis factor-α following subarachnoid hemorrhage. J Neurosurg 87:215–220PubMedCrossRefGoogle Scholar
  49. 49.
    Kikuchi T, Okuda Y, Kaito N, Abe T (1995) Cytokine production in cerebrospinal fluid after subarachnoid haemorrhage. Neurol Res 17:106–108PubMedCrossRefGoogle Scholar
  50. 50.
    Kwon KY, Jeon BC (2001) Cytokine levels in cerebrospinal fluid and delayed ischemic deficits in patients with aneurysmal subarachnoid hemorrhage. J Korean Med Sci 16:774–780PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hirashima Y et al (1997) Elevation of platelet activating factor, inflammatory cytokines, and coagulation factors in the internal jugular vein of patients with subarachnoid hemorrhage. Neurochem Res 22:1249–1255PubMedCrossRefGoogle Scholar
  52. 52.
    Gruber A et al (2000) Ventricular cerebrospinal fluid and serum concentrations of sTNFR-I, IL-1ra, and IL-6 after aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol 12:297–306PubMedCrossRefGoogle Scholar
  53. 53.
    Steptoe A, Kivimäki M (2012) Stress and cardiovascular disease. Nat Rev Cardiol 9:360–370PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang ZH, Rashba S, Oppenheimer SM (1998) Insular cortex lesions alter baroreceptor sensitivity in the urethane-anesthetized rat. Brain Res 813:73–81PubMedCrossRefGoogle Scholar
  55. 55.
    Oppenheimer SM, Gelb A, Girvin JP, Hachinski VC (1992) Cardiovascular effects of human insular cortex stimulation. Neurology 42:1727–1732PubMedCrossRefGoogle Scholar
  56. 56.
    Meyer S, Strittmatter M, Fischer C, Georg T, Schmitz B (2004) Lateralization in autonomic dysfunction in ischemic stroke involving the insular cortex. Neuroreport 15:357–361PubMedCrossRefGoogle Scholar
  57. 57.
    Nagai M, Hoshide S, Kario K (2010) The insular cortex and cardiovascular system: a new insight into the brain-heart axis. J Am Soc Hypertens 4:174–182PubMedCrossRefGoogle Scholar
  58. 58.
    Christensen H, Boysen G, Christensen AF, Johannesen HH (2005) Insular lesions, ECG abnormalities, and outcome in acute stroke. J Neurol Neurosurg Psychiatry 76:269–271PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Laowattana S et al (2006) Left insular stroke is associated with adverse cardiac outcome. Neurology 66:477–483PubMedCrossRefGoogle Scholar
  60. 60.
    Kopelnik A, Zaroff JG (2006) Neurocardiogenic injury in neurovascular disorders. Crit Care Clin 22:733–752PubMedCrossRefGoogle Scholar
  61. 61.
    Samuels MA (2007) The brain–heart connection. Circulation 116:77–84PubMedCrossRefGoogle Scholar
  62. 62.
    Tokgözoglu SL et al (1999) Effects of stroke localization on cardiac autonomic balance and sudden death. Stroke 30:1307–1311PubMedCrossRefGoogle Scholar
  63. 63.
    Colivicchi F, Bassi A, Santini M, Caltagirone C (2004) Cardiac autonomic derangement and arrhythmias in right-sided stroke with insular involvement. Stroke 35:2094–2098PubMedCrossRefGoogle Scholar
  64. 64.
    Cechetto DF, Chen SJ (1990) Subcortical sites mediating sympathetic responses from insular cortex in rats. Am J Physiol 258:R245–R255PubMedGoogle Scholar
  65. 65.
    Oppenheimer S (2002) The heart of the matter. Cerebrovasc Dis 14:65–66PubMedCrossRefGoogle Scholar
  66. 66.
    Oppenheimer SM, Cechetto DF (1990) Cardiac chronotropic organization of the rat insular cortex. Brain Res 533:66–72PubMedCrossRefGoogle Scholar
  67. 67.
    Oppenheimer SM (1994) Neurogenic cardiac effects of cerebrovascular disease. Curr Opin Neurol 7:20–24PubMedCrossRefGoogle Scholar
  68. 68.
    Critchley HD, Corfield DR, Chandler MP, Mathias CJ, Dolan RJ (2000) Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J Physiol 523(Pt 1):259–270PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Critchley HD et al (2004) Mental stress and sudden cardiac death: asymmetric midbrain activity as a linking mechanism. Brain 128:75–85PubMedCrossRefGoogle Scholar
  70. 70.
    Wager TD et al (2009) Brain mediators of cardiovascular responses to social threat. Neuroimage 47:821–835PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Wager TD et al (2009) Brain mediators of cardiovascular responses to social threat, Part II: prefrontal-subcortical pathways and relationship with anxiety. Neuroimage 47:836–851PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Taggart P, Critchley H, Lambiase PD (2011) Heart-brain interactions in cardiac arrhythmia. Heart 97:698–708PubMedCrossRefGoogle Scholar
  73. 73.
    Asahina M, Suzuki A, Mori M, Kanesaka T, Hattori T (2003) Emotional sweating response in a patient with bilateral amygdala damage. Int J Psychophysiol 47:87–93PubMedCrossRefGoogle Scholar
  74. 74.
    Phelps EA et al (2001) Activation of the left amygdala to a cognitive representation of fear. Nat Neurosci 4:437–441PubMedCrossRefGoogle Scholar
  75. 75.
    Gianaros PJ, Van der Veen FM, Jennings JR (2004) Regional cerebral blood flow correlates with heart period and high-frequency heart period variability during working-memory tasks: implications for the cortical and subcortical regulation of cardiac autonomic activity. Psychophysiology 41:521–530PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Saha S, Drinkhill MJ, Moore JP, Batten TFC (2005) Central nucleus of amygdala projections to rostral ventrolateral medulla neurones activated by decreased blood pressure. Eur J Neurosci 21:1921–1930PubMedCrossRefGoogle Scholar
  77. 77.
    Gray MA, Rylander K, Harrison NA, Wallin BG, Critchley HD (2009) Following one’s heart: cardiac rhythms gate central initiation of sympathetic reflexes. J Neurosci 29:1817–1825PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Rogers MC, Abildskov JA, Preston JB (1973) Neurogenic ECG changes in critically ill patients: an experimental model. Crit Care Med 1:192–196PubMedCrossRefGoogle Scholar
  79. 79.
    Vriz O et al (2015) Can apical ballooning cardiomyopathy and anterior STEMI be differentiated based on β1 and β2-adrenergic receptors polymorphisms? Int J Cardiol 199:189–192PubMedCrossRefGoogle Scholar
  80. 80.
    Zaroff JG et al (2006) Adrenoceptor polymorphisms and the risk of cardiac injury and dysfunction after subarachnoid hemorrhage. Stroke 37:1680–1685PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Khush KK et al (2012) Beta-adrenergic receptor polymorphisms and cardiac graft function in potential organ donors. Am J Transplant 12:3377–3386PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ogimoto A et al (2012) Impact of synergistic polymorphisms in adrenergic receptor-related genes and cardiovascular events in patients with dilated cardiomyopathy. Circ J 76:2003–2008PubMedCrossRefGoogle Scholar
  83. 83.
    Heckbert SR et al (2003) Beta2-adrenergic receptor polymorphisms and risk of incident cardiovascular events in the elderly. Circulation 107:2021–2024PubMedCrossRefGoogle Scholar
  84. 84.
    Liggett SB et al (2008) A GRK5 polymorphism that inhibits β-adrenergic receptor signaling is protective in heart failure. Nat Med 14:510–517PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Figtree GA et al (2013) No association of G-protein-coupled receptor kinase 5 or β-adrenergic receptor polymorphisms with Takotsubo cardiomyopathy in a large Australian cohort. Eur J Heart Fail 15:730–733PubMedCrossRefGoogle Scholar
  86. 86.
    Spinelli L et al (2010) L41Q polymorphism of the G protein coupled receptor kinase 5 is associated with left ventricular apical ballooning syndrome. Eur J Heart Fail 12:13–16PubMedCrossRefGoogle Scholar
  87. 87.
    Novo G et al (2015) G-protein-coupled receptor kinase 5 polymorphism and Takotsubo cardiomyopathy. J Cardiovasc Med 16:639–643CrossRefGoogle Scholar
  88. 88.
    Hendrix P et al (2017) The role of endothelial nitric oxide synthase −786 T/C polymorphism in cardiac instability following aneurysmal subarachnoid hemorrhage. Nitric Oxide 71:52–56PubMedCrossRefGoogle Scholar
  89. 89.
    Small KM, Wagoner LE, Levin AM, Kardia SLR, Ligget SB (2002) Synergistic polymorphisms of beta1- and alpha2C-adrenergic receptors and the risk of congestive heart failure. N Engl J Med 347:1135–1142PubMedCrossRefGoogle Scholar
  90. 90.
    Sharkey SW et al (2009) Adrenergic receptor polymorphisms in patients with stress (tako-tsubo) cardiomyopathy. J Cardiol 53:53–57PubMedCrossRefGoogle Scholar
  91. 91.
    Börjesson M, Magnusson Y, Hjalmarson Å, Andersson B (2000) A novel polymorphism in the gene coding for the beta1-adrenergic receptor associated with survival in patients with heart failure. Eur Heart J 21:1853–1858PubMedCrossRefGoogle Scholar
  92. 92.
    Brodde OE, Michel MC (1999) Adrenergic and muscarinic receptors in the human heart. Pharmacol. Rev 51:651–690PubMedGoogle Scholar
  93. 93.
    Menon B, Singh M, Ross RS, Johnson JN, Singh K (2006) β-Adrenergic receptor-stimulated apoptosis in adult cardiac myocytes involves MMP-2-mediated disruption of β 1 integrin signaling and mitochondrial pathway. Am J Physiol Cell Physiol 290:C254–C261PubMedCrossRefGoogle Scholar
  94. 94.
    Feldman RD (1987) Beta-adrenergic receptor alterations in hypertension--physiological and molecular correlates. Can J Physiol Pharmacol 65:1666–1672PubMedCrossRefGoogle Scholar
  95. 95.
    Dishy V et al (2001) The effect of common polymorphisms of the β2-adrenergic receptor on agonist-mediated vascular desensitization. N Engl J Med 345:1030–1035PubMedCrossRefGoogle Scholar
  96. 96.
    Iaccarino G, Tomhave ED, Lefkowitz RJ, Koch WJ (1998) Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by β-adrenergic receptor stimulation and blockade. Circulation 98:1783–1789PubMedCrossRefGoogle Scholar
  97. 97.
    Bastos P, Gomes T, Ribeiro L (2017) Catechol-O-methyltransferase (COMT): an update on its role in cancer, neurological and cardiovascular diseases. Rev Physiol Biochem Pharmacol 173:1–39PubMedCrossRefGoogle Scholar
  98. 98.
    Nakayama M et al (1999) T-786→C mutation in the 5′-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation 99:2864–2870PubMedCrossRefGoogle Scholar
  99. 99.
    Nakayama M et al (2000) T −786 →C Mutation in the 5′-flanking region of the endothelial nitric oxide synthase gene is associated with myocardial infarction, especially without coronary organic stenosis. Am J Cardiol 86:628–634PubMedCrossRefGoogle Scholar
  100. 100.
    Liu D et al (2014) Association between the −786T>C 1polymorphism in the promoter region of endothelial nitric oxide synthase (eNOS) and risk of coronary artery disease: a systematic review and meta-analysis. Gene 545:175–183PubMedCrossRefGoogle Scholar
  101. 101.
    Cheung RTF, Hachinski V (2004) Cardiac effects of stroke. Curr Treat Options Cardiovasc Med 6:199–207PubMedCrossRefGoogle Scholar
  102. 102.
    Sakr YL et al (2004) Relation of ECG changes to neurological outcome in patients with aneurysmal subarachnoid hemorrhage. Int J Cardiol 96:369–373PubMedCrossRefGoogle Scholar
  103. 103.
    Di Pasquale G et al (1987) Holter detection of cardiac arrhythmias in intracranial subarachnoid hemorrhage. Am J Cardiol 59:596–600PubMedCrossRefGoogle Scholar
  104. 104.
    Sommargren CE, Zaroff JG, Banki N, Drew BJ (2002) Electrocardiographic repolarization abnormalities in subarachnoid hemorrhage. J Electrocardiol 35:257–262PubMedCrossRefGoogle Scholar
  105. 105.
    Dimant J, Grob D (1977) Electrocardiographic changes and myocardial damage in patients with acute cerebrovascular accidents. Stroke 8:448–455PubMedCrossRefGoogle Scholar
  106. 106.
    Cubeddu LX (2003) QT prolongation and fatal arrhythmias: a review of clinical implications and effects of drugs. Am J Ther 10:452–457PubMedCrossRefGoogle Scholar
  107. 107.
    Machado C et al (1997) Torsade de pointes as a complication of subarachnoid hemorrhage: a critical reappraisal. J Electrocardiol 30:31–37PubMedCrossRefGoogle Scholar
  108. 108.
    Michael Frangiskakis J et al (2009) Ventricular arrhythmia risk after subarachnoid hemorrhage. Neurocrit Care 10:287–294PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Parekh N et al (2000) Cardiac troponin I predicts myocardial dysfunction in aneurysmal subarachnoid hemorrhage. J Am Coll Cardiol 36:1328–1335PubMedCrossRefGoogle Scholar
  110. 110.
    Tung P et al (2004) Predictors of neurocardiogenic injury after subarachnoid hemorrhage. Stroke 35:548–553PubMedCrossRefGoogle Scholar
  111. 111.
    Yarlagadda S et al (2006) Cardiovascular predictors of in-patient mortality after subarachnoid hemorrhage. Neurocrit Care Care 5:102–107CrossRefGoogle Scholar
  112. 112.
    Coghlan LA et al (2009) Independent associations between electrocardiographic abnormalities and outcomes in patients with aneurysmal subarachnoid hemorrhage findings from the intraoperative hypothermia aneurysm surgery trial. Stroke 40:412–418PubMedCrossRefGoogle Scholar
  113. 113.
    van Der Bilt IA et al (2015) Time course and risk factors for myocardial dysfunction after aneurysmal subarachnoid hemorrhage. Neurosurgery 76:700–706PubMedCrossRefGoogle Scholar
  114. 114.
    Sugimoto K et al (2012) The role of norepinephrine and estradiol in the pathogenesis of cardiac wall motion abnormality associated with subarachnoid hemorrhage. Stroke 43:1897–1903PubMedCrossRefGoogle Scholar
  115. 115.
    Davis MJ et al (2012) Anesthetic management and outcome in patients during endovascular therapy for acute stroke. Surv Anesthesiol 57:396–405CrossRefGoogle Scholar
  116. 116.
    Kilbourn KJ, Levy S, Staff I, Kureshi I, McCullough L (2013) Clinical characteristics and outcomes of neurogenic stress cadiomyopathy in aneurysmal subarachnoid hemorrhage. Clin Neurol Neurosurg 115:909–914PubMedCrossRefGoogle Scholar
  117. 117.
    Kilbourn KJ, Ching G, Silverman DI, McCullough L, Brown RJ (2015) Clinical outcomes after neurogenic stress induced cardiomyopathy in aneurysmal sub-arachnoid hemorrhage: a prospective cohort study. Clin Neurol Neurosurg 128:4–9PubMedCrossRefGoogle Scholar
  118. 118.
    Zhang L, Wang Z, Qi S (2015) Cardiac troponin elevation and outcome after subarachnoid hemorrhage: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis 24:1–10CrossRefGoogle Scholar
  119. 119.
    Zhang L, Qi S (2016) Electrocardiographic abnormalities predict adverse clinical outcomes in patients with subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 25:2653–2659PubMedCrossRefGoogle Scholar
  120. 120.
    Sugimoto K et al (2018) Electrocadiographic scoring helps predict left ventricular wall motion abnormality commonly observed after subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 27:3148–3154PubMedCrossRefGoogle Scholar
  121. 121.
    Scheitz JF, Endres M, Mochmann HC, Audebert HJ, Nolte CH (2012) Frequency, determinants and outcome of elevated troponin in acute ischemic stroke patients. Int J Cardiol 157:239–242PubMedCrossRefGoogle Scholar
  122. 122.
    Choi J-Y et al (2017) Left ventricular wall motion abnormalities. Neurology 88:586–594PubMedCrossRefGoogle Scholar
  123. 123.
    Hasanin A et al (2016) Incidence and outcome of cardiac injury in patients with severe head trauma. Scand J Trauma Resusc Emerg Med 24:1–6CrossRefGoogle Scholar
  124. 124.
    Chalouhi N et al (2016) Beta-blocker therapy and impact on outcome after aneurysmal subarachnoid hemorrhage: a cohort study. J Neurosurg 125:730–736.  https://doi.org/10.3171/2015.7.jns15956CrossRefPubMedGoogle Scholar
  125. 125.
    Diringer MN et al (2011) Critical care management of patients following aneurysmal subarachnoid hemorrhage: Recommendations from the neurocritical care society’s multidisciplinary consensus conference. Neurocrit Care 15:211–240PubMedCrossRefGoogle Scholar
  126. 126.
    Hravnak M et al (2009) Elevated cardiac troponin i and relationship to persistence of electrocardiographic and echocardiographic abnormalities after aneurysmal subarachnoid hemorrhage. Stroke 40:3478–3484PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Malik AN, Gross BA, Rosalind Lai PM, Moses ZB, Du R (2015) Neurogenic stress cardiomyopathy after aneurysmal subarachnoid hemorrhage. World Neurosurg 83:880–885PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Banki N et al (2006) Prospective analysis of prevalence, distribution, and rate of recovery of left ventricular systolic dysfunction in patients with subarachnoid hemorrhage. J Neurosurg 105:15–20PubMedCrossRefGoogle Scholar
  129. 129.
    Tung PP et al (2005) Plasma B-type natriuretic peptide levels are associated with early cardiac dysfunction after subarachnoid hemorrhage. Stroke 36:1567–1571PubMedCrossRefGoogle Scholar
  130. 130.
    Bulsara KR et al (2003) Use of the peak troponin value to differentiate myocardial infarction from reversible neurogenic left ventricular dysfunction associated with aneurysmal subarachnoid hemorrhage. J Neurosurg 98:524–528PubMedCrossRefGoogle Scholar
  131. 131.
    Pinnamaneni S, Aronow WS, Frishman WH (2017) Neurocardiac injury after cerebral and subarachnoid hemorrhages. Cardiol Rev 25:89–95PubMedCrossRefGoogle Scholar
  132. 132.
    Schmidt JM et al (2014) Prolonged elevated heart rate is a risk factor for adverse cardiac events and poor outcome after subarachnoid hemorrhage. Neurocrit Care 20:390–398PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Liang CW, Chen R, Macri E, Naval N (2013) Preadmission beta-blockers are associated with decreased incidence of neurogenic stunned myocardium in aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 22:601–607PubMedCrossRefGoogle Scholar
  134. 134.
    Laowattana S, Oppenheimer SM (2007) Protective effects of beta-blockers in cerebrovascular disease. Neurology 68:509–514PubMedCrossRefGoogle Scholar
  135. 135.
    Meyer JS et al (1974) Effects of beta-adrenergic blockade on cerebral autoregulation and chemical vasomotor control in patients with stroke. Stroke 5:167–179PubMedCrossRefGoogle Scholar
  136. 136.
    Neil-Dwyer G, Walter P, Cruickshank JM, Doshi B, O’Gorman P (1978) Effect of propranolol and phentolamine on myocardial necrosis after subarachnoid haemorrhage. Br Med J 2:990–992PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Kawaguchi M et al (2010) Effects of a short-acting β1 receptor antagonist landiolol on hemodynamics and tissue injury markers in patients with subarachnoid hemorrhage undergoing intracranial aneurysm surgery. J Neurosurg Anesthesiol 22:230–239PubMedCrossRefGoogle Scholar
  138. 138.
    Okabe T, Kanzaria M, Rincon F, Kraft WK (2013) Cardiovascular protection to improve clinical outcomes after subarachnoid hemorrhage: is there a proven role? Neurocrit Care 18:271–284PubMedCrossRefGoogle Scholar
  139. 139.
    Naidech A et al (2005) Dobutamine versus milrinone after subarachnoid hemorrhage. Neurosurgery 56:21–27PubMedCrossRefGoogle Scholar
  140. 140.
    Padayachee L (2007) Levosimendan: the inotrope of choice in cardiogenic shock secondary to Takotsubo cardiomyopathy? Heart Lung Circ 16:S65–S70PubMedCrossRefGoogle Scholar
  141. 141.
    De Santis V, Vitale D, Tritapepe L, Greco C, Pietropaoli P (2008) Use of levosimendan for cardiogenic shock in a patient with apical ballooning syndrome. Ann Intern Med 149:365–367PubMedCrossRefGoogle Scholar
  142. 142.
    Antonini M, Stazi GV, Cirasa MT, Garotto G, Frustaci A (2010) Efficacy of levosimendan in Takotsubo-related cardiogenic shock. Acta Anaesthesiol Scand 54:119–120PubMedCrossRefGoogle Scholar
  143. 143.
    Konczalla J et al (2016) Levosimendan, a new therapeutic approach to prevent delayed cerebral vasospasm after subarachnoid hemorrhage? Acta Neurochir (Wien) 158:2075–2083CrossRefGoogle Scholar
  144. 144.
    Lazaridis C, Pradilla G, Nyquist PA, Tamargo RJ (2010) Intra-aortic balloon pump counterpulsation in the setting of subarachnoid hemorrhage, cerebral vasospasm, and neurogenic stress cardiomyopathy. Case report and review of the literature. Neurocrit Care 13:101–108PubMedCrossRefGoogle Scholar
  145. 145.
    Ducruet AF et al (2013) Balloon-pump counterpulsation for management of severe cardiac dysfunction after aneurysmal subarachnoid hemorrhage. World Neurosurg 80:347–352CrossRefGoogle Scholar
  146. 146.
    Agarwal S, Bean MG, Hata JS, Castresana MR (2017) Perioperative Takotsubo cardiomyopathy: a systematic review of published cases. Semin Cardiothorac Vasc Anesth 21:277–290PubMedCrossRefGoogle Scholar
  147. 147.
    Sathishkumar S, Lau W (2007) Anaesthetic management of patients with Takotsubo cardiomyopathy. Anaesthesia 62:968–969PubMedCrossRefGoogle Scholar
  148. 148.
    Fawcett WJ, Haxby EJ, Male DA (1999) Magnesium: physiology and pharmacology. Br J Anaesth 83:302–320PubMedCrossRefGoogle Scholar
  149. 149.
    Douglas WW, Rubin RP (1963) The mechanism of catecholamine release from the adrenal medulla and the role of calcium in stimulus-secretion coupling. J Physiol 167:288–310PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Anna Teresa Mazzeo
    • 1
    • 2
    Email author
  • Valentina Tardivo
    • 3
  • Simone Cappio Borlino
    • 1
  • Diego Garbossa
    • 3
  1. 1.Division of Anesthesia and Intensive Care, Department of Surgical SciencesUniversity of TorinoTorinoItaly
  2. 2.Azienda Ospedaliera Universitaria Policlinico G. MartinoMessinaItaly
  3. 3.Neurosurgery, Department of Neurosciences and Mental HealthUniversity of TorinoTorinoItaly

Personalised recommendations