Advertisement

Physiology of Cardiovascular System

  • Ashok Kumar JaryalEmail author
  • Akanksha Singh
  • Kishore Kumar Deepak
Chapter
  • 57 Downloads
Part of the Physiology in Clinical Neurosciences – Brain and Spinal Cord Crosstalks book series (PNBSCC)

Abstract

Maintenance of adequate perfusion to the tissues is achieved by circulation of limited volume blood driven by the intermittently contracting heart through different components of the vasculature. Each component of vasculature has unique properties suited to its function. A clear understanding of the haemodynamic principles that govern the blood flow is critical for appreciating the physiological mechanism that operates to maintain cardiac output during changing metabolic demands. A large number of reflexes modulate the properties of heart and vasculature for homeostatic maintenance of the haemodynamics and its modulation during emotions and motivated behaviours such as exercise.

Notes

Acknowledgements

The concepts and information presented in this chapter have been drawn from the research reports of hundreds of scientists from countless laboratories over last century, only a few of whom have been referred directly. We have made efforts to compile diverse and detailed data into simple unifying notions, to be able to visualize forest without losing sight of the trees.

References

  1. 1.
    Bennett AF, Ruben JA (1979) Endothermy and activity in vertebrates. Science. 206(4419):649–654PubMedCrossRefGoogle Scholar
  2. 2.
    Schulte K, Kunter U, Moeller MJ (2015) The evolution of blood pressure and the rise of mankind. Nephrol Dial Transplant 30(5):713–723PubMedCrossRefGoogle Scholar
  3. 3.
    Snyder GK, Weathers WW (1977) Hematology, viscosity, and respiratory functions of whole blood of the lesser mouse deer, Tragulus javanicus. J Appl Physiol. 42(5):673–678PubMedCrossRefGoogle Scholar
  4. 4.
    Asmussen E, Nielsen M (1955) Cardiac output during muscular work and its regulation. Physiol Rev. 35(4):778–800PubMedCrossRefGoogle Scholar
  5. 5.
    Barger AC, Richards V, Metcalfe J, Gunther B (1956) Regulation of the circulation during exercise; cardiac output (direct Fick) and metabolic adjustments in the normal dog. Am J Physiol. 184(3):613–623PubMedCrossRefGoogle Scholar
  6. 6.
    Bailie MD, Robinson S, Rostorfer HH, Newton JL (1961) Effects of exercise on heart output of the dog. J Appl Physiol. 16:107–111PubMedCrossRefGoogle Scholar
  7. 7.
    Reeves JT, Grover RF, Filley GF, Blount SG (1961) Cardiac output in normal resting man. J Appl Physiol. 16:276–278PubMedCrossRefGoogle Scholar
  8. 8.
    Laughlin MH, Davis MJ, Secher NH, van Lieshout JJ, Arce-Esquivel AA, Simmons GH et al (2012) Peripheral circulation. Compr Physiol. 2(1):321–447PubMedCrossRefGoogle Scholar
  9. 9.
    Starr I (1959) On the strength of the heart. Circulation. 20:807–811PubMedCrossRefGoogle Scholar
  10. 10.
    Bayliss WM, Starling EH (1894) Observations on venous pressures and their relationship to capillary pressures. J Physiol. 16(3–4):159–318.7PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Guyton AC, Polizo D, Armstrong GG (1954) Mean circulatory filling pressure measured immediately after cessation of heart pumping. Am J Physiol. 179(2):261–267PubMedCrossRefGoogle Scholar
  12. 12.
    Shoukas AA, Sagawa K (1973) Control of total systemic vascular capacity by the carotid sinus baroreceptor reflex. Circ Res. 33(1):22–33PubMedCrossRefGoogle Scholar
  13. 13.
    Rothe CF (1986) Physiology of venous return. An unappreciated boost to the heart. Arch Intern Med. 146(5):977–982PubMedCrossRefGoogle Scholar
  14. 14.
    Sunagawa K (2017) Guyton’s venous return curves should be taught at medical schools (complete English translation of Japanese version). J Physiol Sci JPS. 67(4):447–458PubMedCrossRefGoogle Scholar
  15. 15.
    Shoukas AA, Brunner MC (1980) Epinephrine and the carotid sinus baroreceptor reflex. Influence on capacitive and resistive properties of the total systemic vascular bed of the dog. Circ Res. 47(2):249–257PubMedCrossRefGoogle Scholar
  16. 16.
    Shoukas AA (1982) Carotid sinus baroreceptor reflex control and epinephrine. Influence on capacitive and resistive properties of the total pulmonary vascular bed of the dog. Circ Res. 51(1):95–101PubMedCrossRefGoogle Scholar
  17. 17.
    Greene AS, Shoukas AA (1986) Changes in canine cardiac function and venous return curves by the carotid baroreflex. Am J Physiol. 251(2 Pt 2):H288–H296PubMedGoogle Scholar
  18. 18.
    Katz LN (1960) The performance of the heart. Circulation. 21:483–498PubMedCrossRefGoogle Scholar
  19. 19.
    Robinson TF, Factor SM, Sonnenblick EH (1986) The heart as a suction pump. Sci Am. 254(6):84–91PubMedCrossRefGoogle Scholar
  20. 20.
    Anderson RM, Fritz JM, O’Hare JE (1967) The mechanical nature of the heart as a pump. Am Heart J. 73(1):92–105PubMedCrossRefGoogle Scholar
  21. 21.
    Brockman SK (1967) Certain aspects of the heart as a pump. Am J Surg. 114(1):119–125PubMedCrossRefGoogle Scholar
  22. 22.
    Yellin EL, Meisner JS (2000) Physiology of diastolic function and transmitral pressure-flow relations. Cardiol Clin. 18(3):411–433, viiPubMedCrossRefGoogle Scholar
  23. 23.
    Zile MR, Baicu CF, Bonnema DD (2005) Diastolic heart failure: definitions and terminology. Prog Cardiovasc Dis. 47(5):307–313PubMedCrossRefGoogle Scholar
  24. 24.
    Howell WH, Donaldson F, Foster M (1883) Experiments upon the heart of the dog with reference to the maximum volume of blood sent out by the left ventricle in a single beat, and the influence of variations in venous pressure, arterial pressure, and pulse rate upon the work done by the heart. Proc R Soc Lond. 35(224–226):271–274Google Scholar
  25. 25.
    Markwalder J, Starling EH (1914) On the constancy of the systolic output under varying conditions. J Physiol. 48(4):348–356PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    The contour of the ventricular volume curves under different conditions. Am J Physiol Leg Content [Internet] [cited 2019 Oct 15]. Available from: https://www.physiology.org/doi/abs/10.1152/ajplegacy.1922.58.3.439
  27. 27.
    Wiggers CJ (1951) Determinants of cardiac performance. Circulation. 4(4):485–495PubMedCrossRefGoogle Scholar
  28. 28.
    Sarnoff SJ, Mitchell JH (1961) The regulation of the performance of the heart. Am J Med. 30:747–771PubMedCrossRefGoogle Scholar
  29. 29.
    Sarnoff SJ, Brockman SK, Gilmore JP, Linden RJ, Mitchell JH (1960) Regulation of ventricular contraction. Influence of cardiac sympathetic and vagal nerve stimulation on atrial and ventricular dynamics. Circ Res. 8:1108–1122PubMedCrossRefGoogle Scholar
  30. 30.
    Reeves JT, Grover RF, Blount SG, Filley GF (1961) Cardiac output response to standing and treadmill walking. J Appl Physiol. 16:283–288PubMedCrossRefGoogle Scholar
  31. 31.
    Hoffman BF (1961) Physiology of atrioventricular transmission. Circulation. 24:506–517PubMedCrossRefGoogle Scholar
  32. 32.
    Wiggers CJ (1921) Studies on the consecutive phases of the cardiac cycle. Am J Physiol Leg Content. 56(3):415–438CrossRefGoogle Scholar
  33. 33.
    Braunwald E, Moscovitz HL, Amram SS, Lasser RP, Sapin SO, Himmelstein A et al (1955) The hemodynamics of the left side of the heart as studied by simultaneous left atrial, left ventricular, and aortic pressures; particular reference to mitral stenosis. Circulation. 12(1):69–81PubMedCrossRefGoogle Scholar
  34. 34.
    Sengupta PP, Tajik AJ, Chandrasekaran K, Khandheria BK (2008) Twist mechanics of the left ventricle: principles and application. JACC Cardiovasc Imaging. 1(3):366–376PubMedCrossRefGoogle Scholar
  35. 35.
    Young AA, Cowan BR (2012) Evaluation of left ventricular torsion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:49PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Sarnoff SJ, Berglund E (1954) Ventricular function. I. Starling’s law of the heart studied by means of simultaneous right and left ventricular function curves in the dog. Circulation. 9(5):706–718PubMedCrossRefGoogle Scholar
  37. 37.
    Hamilton WF, Remington JW, Hamilton WF (1950) Factors relating to heart size in the intact animal. Am J Physiol. 163(2):260–267PubMedCrossRefGoogle Scholar
  38. 38.
    Levine HJ, Wagman RJ (1962) Energetics of the human heart. Am J Cardiol. 9:372–383PubMedCrossRefGoogle Scholar
  39. 39.
    De Jager S (1886) Experiments and considerations on haemodynamics. J Physiol. 7(2):130–215PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Donald DE, Shepherd JT (1980) Autonomic regulation of the peripheral circulation. Annu Rev Physiol. 42:429–439PubMedCrossRefGoogle Scholar
  41. 41.
    Vanhoutte PM (1979) Endothelium and control of vascular function. State of the Art lecture. Hypertension 13(6 Pt 2):658–667Google Scholar
  42. 42.
    Furchgott RF, Vanhoutte PM (1989) Endothelium-derived relaxing and contracting factors. FASEB J 3(9):2007–2018PubMedCrossRefGoogle Scholar
  43. 43.
    Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci. 7(5):335–346PubMedCrossRefGoogle Scholar
  44. 44.
    Bayliss WM (1902) On the local reactions of the arterial wall to changes of internal pressure. J Physiol. 28(3):220–231PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Sparks HV, Belloni FL (1978) The peripheral circulation: local regulation. Annu Rev Physiol. 40:67–92PubMedCrossRefGoogle Scholar
  46. 46.
    Krogh A, Lindhard J (1913) The regulation of respiration and circulation during the initial stages of muscular work. J Physiol. 47(1–2):112–136PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Rothe CF (1983) Reflex control of veins and vascular capacitance. Physiol Rev. 63(4):1281–1342PubMedCrossRefGoogle Scholar
  48. 48.
    Groom AC, Lofving BM, Rowlands S, Thomas HW (1962) The effect of lowering the pulse pressure in the carotid arteries on the cardiac output in the cat. Acta Physiol Scand. 54:116–127PubMedCrossRefGoogle Scholar
  49. 49.
    Herndon CW, Sagawa K (1969) Combined effects of aortic and right atrial pressures on aortic flow. Am J Physiol. 217(1):65–72PubMedCrossRefGoogle Scholar
  50. 50.
    Guyton AC, Abernathy B, Langston JB, Kaufmann BN, Fairchild HM (1959) Relative importance of venous and arterial resistances in controlling venous return and cardiac output. Am J Physiol. 196(5):1008–1014PubMedCrossRefGoogle Scholar
  51. 51.
    McMichael J, Sharpey-Schafer EP (1944) Cardiac output in man by a direct Fick method: effects of posture, venous pressure change, atropine, and adrenaline. Br Heart J. 6(1):33–40PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Brandfonbrener M, Landowne M, Shock NW (1955) Changes in cardiac output with age. Circulation. 12(4):557–566PubMedCrossRefGoogle Scholar
  53. 53.
    Guyton AC (1955) Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 35(1):123–129PubMedCrossRefGoogle Scholar
  54. 54.
    Guyton AC, Lindsey AW, Abernathy B, Richardson T (1957) Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol. 189(3):609–615PubMedCrossRefGoogle Scholar
  55. 55.
    Uemura K, Sugimachi M, Kawada T, Kamiya A, Jin Y, Kashihara K et al (2004) A novel framework of circulatory equilibrium. Am J Physiol Heart Circ Physiol. 286(6):H2376–H2385PubMedCrossRefGoogle Scholar
  56. 56.
    Sugimachi M, Sunagawa K, Uemura K, Kamiya A, Shimizu S, Inagaki M et al (2010) Estimated venous return surface and cardiac output curve precisely predicts new hemodynamics after volume change. Conf Proc IEEE Eng Med Biol Soc 2010:5205–5208PubMedGoogle Scholar
  57. 57.
    Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA et al (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18(12):1440–1463PubMedCrossRefGoogle Scholar
  58. 58.
    Spinale FG (2015) Assessment of cardiac function – basic principles and approaches. Compr Physiol. 5(4):1911–1946PubMedCrossRefGoogle Scholar
  59. 59.
    Aviado DM, Guevara Aviado D (2001) The Bezold–Jarisch reflex. A historical perspective of cardiopulmonary reflexes. Ann N Y Acad Sci. 940:48–58PubMedCrossRefGoogle Scholar
  60. 60.
    Coote JH, Chauhan RA (2016) The sympathetic innervation of the heart: Important new insights. Auton Neurosci Basic Clin. 199:17–23CrossRefGoogle Scholar
  61. 61.
    Coote JH (1988) The organisation of cardiovascular neurons in the spinal cord. Rev Physiol Biochem Pharmacol. 110:147–285PubMedCrossRefGoogle Scholar
  62. 62.
    Bronk DW, Ferguson LK, Margaria R, Solandt DY (1936) The activity of the cardiac sympathetic centers. Am J Physiol-Leg Content. 117(2):237–249CrossRefGoogle Scholar
  63. 63.
    Samaan A (1935) The antagonistic cardiac nerves and heart rate. J Physiol. 83(3):332–340PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Barrett CJ, Guild S-J, Ramchandra R, Malpas SC (2005) Baroreceptor denervation prevents sympathoinhibition during angiotensin II-induced hypertension. Hypertension 46(1):168–172PubMedCrossRefGoogle Scholar
  65. 65.
    Renaud LP, Jhamandas JH, Buijs R, Raby W, Randle JC (1988) Cardiovascular input to hypothalamic neurosecretory neurons. Brain Res Bull. 20(6):771–777PubMedCrossRefGoogle Scholar
  66. 66.
    Heymans C (1960) Reflexogenic areas of the cardiovascular system. Perspect Biol Med. 3:409–417PubMedCrossRefGoogle Scholar
  67. 67.
    Kirchheim HR (1976) Systemic arterial baroreceptor reflexes. Physiol Rev. 56(1):100–177PubMedCrossRefGoogle Scholar
  68. 68.
    Seagard JL, van Brederode JF, Dean C, Hopp FA, Gallenberg LA, Kampine JP (1990) Firing characteristics of single-fiber carotid sinus baroreceptors. Circ Res. 66(6):1499–1509PubMedCrossRefGoogle Scholar
  69. 69.
    Ead HW, Green JH, Neil E (1952) A comparison of the effects of pulsatile and non-pulsatile blood flow through the carotid sinus on the reflexogenic activity of the sinus baroceptors in the cat. J Physiol. 118(4):509–519PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Guo GB, Thames MD, Abboud FM (1982) Differential baroreflex control of heart rate and vascular resistance in rabbits. Relative role of carotid, aortic, and cardiopulmonary baroreceptors. Circ Res. 50(4):554–565PubMedCrossRefGoogle Scholar
  71. 71.
    Alexander N, Decuir M (1963) Role of aortic and vagus nerves in arterial baroreflex bradycardia in rabbits. Am J Physiol. 205:775–780PubMedCrossRefGoogle Scholar
  72. 72.
    Schreihofer AM, Guyenet PG (1997) Identification of C1 presympathetic neurons in rat rostral ventrolateral medulla by juxtacellular labeling in vivo. J Comp Neurol. 387(4):524–536PubMedCrossRefGoogle Scholar
  73. 73.
    Guyenet PG, Darnall RA, Riley TA (1990) Rostral ventrolateral medulla and sympathorespiratory integration in rats. Am J Physiol. 259(5 Pt 2):R1063–R1074PubMedGoogle Scholar
  74. 74.
    Spyer KM (1994 1) Annual review prize lecture. Central nervous mechanisms contributing to cardiovascular control. J Physiol. 474(1):1–19PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Schreihofer AM, Guyenet PG (2002) The baroreflex and beyond: control of sympathetic vasomotor tone by GABAergic neurons in the ventrolateral medulla. Clin Exp Pharmacol Physiol. 29(5–6):514–521PubMedCrossRefGoogle Scholar
  76. 76.
    Pickering TG, Gribbin B, Petersen ES, Cunningham DJ, Sleight P (1972) Effects of autonomic blockade on the baroreflex in man at rest and during exercise. Circ Res. 30(2):177–185PubMedCrossRefGoogle Scholar
  77. 77.
    Stornetta RL, Guyenet PG, McCarty RC (1987) Autonomic nervous system control of heart rate during baroreceptor activation in conscious and anesthetized rats. J Auton Nerv Syst. 20(2):121–127PubMedCrossRefGoogle Scholar
  78. 78.
    Edis AJ (1971) Aortic baroreflex function in the dog. Am J Physiol. 221(5):1352–1357PubMedCrossRefGoogle Scholar
  79. 79.
    Michelini LC, O’Leary DS, Raven PB, Nóbrega ACL (2015) Neural control of circulation and exercise: a translational approach disclosing interactions between central command, arterial baroreflex, and muscle metaboreflex. Am J Physiol Heart Circ Physiol. 309(3):H381–H392PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Smyth HS, Sleight P, Pickering GW (1969) Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreflex sensitivity. Circ Res. 24(1):109–121PubMedCrossRefGoogle Scholar
  81. 81.
    Ludbrook J, Mancia G, Ferrari A, Zanchetti A (1977) The variable-pressure neck-chamber method for studying the carotid baroreflex in man. Clin Sci Mol Med. 53(2):165–171PubMedGoogle Scholar
  82. 82.
    Parati G, Di Rienzo M, Mancia G (2000) How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens. 18(1):7–19PubMedCrossRefGoogle Scholar
  83. 83.
    Yadav K, Singh A, Badhwar S, Jaryal AK, Coshic P, Chatterjee K et al (2017) Decreased spontaneous baroreflex sensitivity as an early marker for progression of haemorrhage. High Blood Press Cardiovasc Prev 24(3):275–281PubMedCrossRefGoogle Scholar
  84. 84.
    Zoller RP, Mark AL, Abboud FM, Schmid PG, Heistad DD (1972) The role of low pressure baroreceptors in reflex vasoconstrictor responses in man. J Clin Invest. 51(11):2967–2972PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Rea RF, Hamdan M, Clary MP, Randels MJ, Dayton PJ, Strauss RG (1991) Comparison of muscle sympathetic responses to hemorrhage and lower body negative pressure in humans. J Appl Physiol (1985) 70(3):1401–1405CrossRefGoogle Scholar
  86. 86.
    Johnson BD, van Helmond N, Curry TB, van Buskirk CM, Convertino VA, Joyner MJ (2014) Reductions in central venous pressure by lower body negative pressure or blood loss elicit similar hemodynamic responses. J Appl Physiol (1985) 117(2):131–141CrossRefGoogle Scholar
  87. 87.
    Furlan R, Jacob G, Palazzolo L, Rimoldi A, Diedrich A, Harris PA et al (2001) Sequential modulation of cardiac autonomic control induced by cardiopulmonary and arterial baroreflex mechanisms. Circulation. 104(24):2932–2937PubMedCrossRefGoogle Scholar
  88. 88.
    Iwasaki KI, Zhang R, Zuckerman JH, Pawelczyk JA, Levine BD (2000) Effect of head-down-tilt bed rest and hypovolemia on dynamic regulation of heart rate and blood pressure. Am J Physiol Regul Integr Comp Physiol. 279(6):R2189–R2199PubMedCrossRefGoogle Scholar
  89. 89.
    Bristow JD, Brown EB, Cunningham DJ, Goode RC, Howson MG, Pickering TG et al (1969) Changes in baroreflex sensitivity at the transitions between rest and exercise. J Physiol. 202(2):84P–85PPubMedGoogle Scholar
  90. 90.
    Bristow JD, Brown EB, Cunningham DJ, Goode RC, Howson MG, Sleight P (1971) The effects of hypercapnia, hypoxia and ventilation on the baroreflex regulation of the pulse interval. J Physiol. 216(2):281–302PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Jewett DL (1964) Activity of single efferent fibres in the cervical vagus nerve of the dog, with special reference to possible cardio-inhibitory fibres. J Physiol. 175:321–357PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Yadav K, Akanksha, Jaryal AK, Coshic P, Chatterjee K, Deepak KK (2016) Effect of hypovolemia on efficacy of reflex maintenance of blood pressure on orthostatic challenge. High Blood Press Cardiovasc Prev 23(1):25–30PubMedCrossRefGoogle Scholar
  93. 93.
    Pickering TG, Gribbin B, Petersen ES, Cunningham DJ, Sleight P (1971) Comparison of the effects of exercise and posture on the baroreflex in man. Cardiovasc Res. 5(4):582–586PubMedCrossRefGoogle Scholar
  94. 94.
    Gribbin B, Pickering TG, Sleight P, Peto R (1971) Effect of age and high blood pressure on baroreflex sensitivity in man. Circ Res. 29(4):424–431PubMedCrossRefGoogle Scholar
  95. 95.
    Monahan KD (2007) Effect of aging on baroreflex function in humans. Am J Physiol Regul Integr Comp Physiol. 293(1):R3–R12PubMedCrossRefGoogle Scholar
  96. 96.
    Davidson NS, Goldner S, McCloskey DI (1976) Respiratory modulation of barareceptor and chemoreceptor reflexes affecting heart rate and cardiac vagal efferent nerve activity. J Physiol. 259(2):523–530PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    McAllen RM, Spyer KM (1978) The baroreceptor input to cardiac vagal motoneurones. J Physiol. 282:365–374PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Pelletier CL, Shepherd JT (1975) Effect of hypoxia on vascular responses to the carotid baroreflex. Am J Physiol. 228(1):331–336PubMedCrossRefGoogle Scholar
  99. 99.
    Parati G, Di Rienzo M, Mancia G (2001) Dynamic modulation of baroreflex sensitivity in health and disease. Ann N Y Acad Sci. 940:469–487PubMedCrossRefGoogle Scholar
  100. 100.
    Tomiyama O, Shiigai T, Ideura T, Tomita K, Mito Y, Shinohara S et al (1980) Baroreflex sensitivity in renal failure. Clin Sci (Lond) 58(1):21–27CrossRefGoogle Scholar
  101. 101.
    Kaur M, Chandran DS, Jaryal AK, Bhowmik D, Agarwal SK, Deepak KK (2016) Baroreflex dysfunction in chronic kidney disease. World J Nephrol. 5(1):53–65PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Gupta A, Jain G, Kaur M, Jaryal AK, Deepak KK, Bhowmik D et al (2016) Association of impaired baroreflex sensitivity and increased arterial stiffness in peritoneal dialysis patients. Clin Exp Nephrol. 20(2):302–308PubMedCrossRefGoogle Scholar
  103. 103.
    Lal C, Kaur M, Jaryal AK, Deepak KK, Bhowmik D, Agarwal SK (2017) Reduced baroreflex sensitivity, decreased heart rate variability with increased arterial stiffness in predialysis. Indian J Nephrol. 27(6):446–451PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Watkins LL, Grossman P (1999) Association of depressive symptoms with reduced baroreflex cardiac control in coronary artery disease. Am Heart J. 137(3):453–457PubMedCrossRefGoogle Scholar
  105. 105.
    Bennett T, Hosking DJ, Hampton JR (1975) Cardiovascular control in diabetes mellitus. Br Med J. 2(5971):585–587PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Singh A, Kumar MS, Jaryal AK, Ranjan P, Deepak KK, Sharma S et al (2017) Diabetic status and grade of nonalcoholic fatty liver disease are associated with lower baroreceptor sensitivity in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 29(8):956–961PubMedCrossRefGoogle Scholar
  107. 107.
    Tamuli D, Kaur M, Boligarla A, Jaryal AK, Srivastava AK, Deepak KK (2019) Depressed baroreflex sensitivity from spontaneous oscillations of heart rate and blood pressure in SCA1 and SCA2. Acta Neurol Scand. 140:350–358PubMedCrossRefGoogle Scholar
  108. 108.
    Kaur M, Chandran D, Lal C, Bhowmik D, Jaryal AK, Deepak KK et al (2013) Renal transplantation normalizes baroreflex sensitivity through improvement in central arterial stiffness. Nephrol Dial Transplant 28(10):2645–2655PubMedCrossRefGoogle Scholar
  109. 109.
    Lohmeier TE, Iliescu R (2015) The baroreflex as a long-term controller of arterial pressure. Physiology (Bethesda) 30(2):148–158Google Scholar
  110. 110.
    Kollai M, Koizumi K, Yamashita H, Brooks CM (1978) Study of cardiac sympathetic and vagal efferent activity during reflex responses produced by stretch of the atria. Brain Res. 150(3):519–532PubMedCrossRefGoogle Scholar
  111. 111.
    Paintal AS (1953) A study of right and left atrial receptors. J Physiol. 120(4):596–610PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Schultz HD, Fater DC, Sundet WD, Geer PG, Goetz KL (1982) Reflexes elicited by acute stretch of atrial vs. pulmonary receptors in conscious dogs. Am J Physiol. 242(6):H1065–H1076PubMedGoogle Scholar
  113. 113.
    Koizumi K, Yamashita H (1978) Influence of atrial stretch receptors on hypothalamic neurosecretory neurones. J Physiol. 285:341–358PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Karim F, Kidd C, Malpus CM, Penna PE (1972) The effects of stimulation of the left atrial receptors on sympathetic efferent nerve activity. J Physiol. 227(1):243–260PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Badoer E, McKinlay D, Trigg L, McGrath BP (1997) Distribution of activated neurons in the rabbit brain following a volume load. Neuroscience. 81(4):1065–1077PubMedCrossRefGoogle Scholar
  116. 116.
    Annat G, Grandjean B, Vincent M, Jarsaillon E, Sassard J (1976) Effects of right atrial stretch on plasma renin activity. Arch Int Physiol Biochim. 84(2):311–315PubMedGoogle Scholar
  117. 117.
    Henry JP, Pearce JW (1956) The possible role of cardiac atrial stretch receptors in the induction of changes in urine flow. J Physiol. 131(3):572–585PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Menninger RP (1981) Right atrial stretch decreases supraoptic neurosecretory activity and plasma vasopressin. Am J Physiol. 241(1):R44–R49PubMedGoogle Scholar
  119. 119.
    Dietz JR (1984 Dec) Release of natriuretic factor from rat heart-lung preparation by atrial distension. Am J Physiol. 247(6 Pt 2):R1093–R1096PubMedGoogle Scholar
  120. 120.
    Edwards BS, Zimmerman RS, Schwab TR, Heublein DM, Burnett JC (1988) Atrial stretch, not pressure, is the principal determinant controlling the acute release of atrial natriuretic factor. Circ Res. 62(2):191–195PubMedCrossRefGoogle Scholar
  121. 121.
    Kaufman S, Monckton E (1988) Influence of right atrial stretch and atrial natriuretic factor on rat intestinal fluid content. J Physiol. 402:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Moore-Gillon MJ, Fitzsimons JT (1982) Pulmonary vein-atrial junction stretch receptors and the inhibition of drinking. Am J Physiol. 242(5):R452–R457PubMedGoogle Scholar
  123. 123.
    Anderson CH, McCally M, Farrell GL (1959) The effects of atrial stretch on aldosterone secretion. Endocrinology. 64(2):202–207PubMedCrossRefGoogle Scholar
  124. 124.
    Munzner RF, Ward DG, Gann DS (1981) Right atrium mediates a vasomotor reflex. Am J Physiol. 241(3):R163–R166PubMedGoogle Scholar
  125. 125.
    Christensen G, Leistad E (1997) Atrial systolic pressure, as well as stretch, is a principal stimulus for release of ANF. Am J Physiol. 272(2 Pt 2):H820–H826PubMedGoogle Scholar
  126. 126.
    Paintal AS (1957) The influence of certain chemical substances on the initiation of sensory discharges in pulmonary and gastric stretch receptors and atrial receptors. J Physiol. 135(3):486–510PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Clement DL, Pelletier CL, Shepherd JT (1972) Role of vagal afferents in the control of renal sympathetic nerve activity in the rabbit. Circ Res. 31(6):824–830PubMedCrossRefGoogle Scholar
  128. 128.
    Kantzides A, Owens NC, De Matteo R, Badoer E (2005) Right atrial stretch activates neurons in autonomic brain regions that project to the rostral ventrolateral medulla in the rat. Neuroscience. 133(3):775–786PubMedCrossRefGoogle Scholar
  129. 129.
    Pyner S, Deering J, Coote JH (2002) Right atrial stretch induces renal nerve inhibition and c-fos expression in parvocellular neurones of the paraventricular nucleus in rats. Exp Physiol. 87(1):25–32PubMedCrossRefGoogle Scholar
  130. 130.
    Menninger RP, Frazier DT (1972) Effects of blood volume and atrial stretch on hypothalamic single-unit activity. Am J Physiol. 223(2):288–293PubMedCrossRefGoogle Scholar
  131. 131.
    De Gobbi JIF, Menani JV, Beltz TG, Johnson RF, Thunhorst RL, Johnson AK (2008) Right atrial stretch alters fore- and hind-brain expression of c-fos and inhibits the rapid onset of salt appetite. J Physiol. 586(15):3719–3729PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Blanch GT, Freiria-Oliveira AH, Colombari E, Menani JV, Colombari DSA (2007) Lesions of the commissural subnucleus of the nucleus of the solitary tract increase isoproterenol-induced water intake. Braz J Med Biol Res 40(8):1121–1127PubMedCrossRefGoogle Scholar
  133. 133.
    Ohman LE, Johnson AK (1995) Role of lateral parabrachial nucleus in the inhibition of water intake produced by right atrial stretch. Brain Res. 695(2):275–278PubMedCrossRefGoogle Scholar
  134. 134.
    Kurihara H (1964) Studies on the receptor areas and the nervous pathway of the Bezold-Jarisch reflex in dogs: with reference to the pressoreflex arising from the left coronary artery. Jpn Circ J. 28:219–229PubMedCrossRefGoogle Scholar
  135. 135.
    Frink RJ, James TN (1971) Intracardiac route of the Bezold-Jarisch reflex. Am J Physiol. 221(5):1464–1469PubMedCrossRefGoogle Scholar
  136. 136.
    The sympathetic efferent discharges during the Bezold-Jarisch reflex. - PubMed - NCBI [Internet] [cited 2019 Oct 1]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/?term=Miyamoto+1977+bezold
  137. 137.
    Verberne AJ, Guyenet PG (1992) Medullary pathway of the Bezold-Jarisch reflex in the rat. Am J Physiol. 263(6 Pt 2):R1195–R1202PubMedGoogle Scholar
  138. 138.
    Salo LM, Woods RL, Anderson CR, McAllen RM (2007) Nonuniformity in the von Bezold-Jarisch reflex. Am J Physiol Regul Integr Comp Physiol. 293(2):R714–R720PubMedCrossRefGoogle Scholar
  139. 139.
    Chianca DA, Bonagamba LG, Machado BH (1997) Neurotransmission of the Bezold-Jarisch reflex in the nucleus tractus solitarii of sino-aortic deafferentated rats. Brain Res. 756(1–2):46–51PubMedCrossRefGoogle Scholar
  140. 140.
    Sévoz C, Nosjean A, Callera JC, Machado B, Hamon M, Laguzzi R (1996) Stimulation of 5-HT3 receptors in the NTS inhibits the cardiac Bezold-Jarisch reflex response. Am J Physiol. 271(1 Pt 2):H80–H87PubMedGoogle Scholar
  141. 141.
    Netzer F, Mandjee N, Verberne AJ, Bernard J-F, Hamon M, Laguzzi R et al (2009) Inhibition of the bradycardic component of the von Bezold-Jarisch reflex and carotid chemoreceptor reflex by periaqueductal gray stimulation: involvement of medullary receptors. Eur J Neurosci. 29(10):2017–2028PubMedCrossRefGoogle Scholar
  142. 142.
    Campagna JA, Carter C (2003) Clinical relevance of the Bezold-Jarisch reflex. Anesthesiology. 98(5):1250–1260PubMedCrossRefGoogle Scholar
  143. 143.
    Bezold-Jarisch reflex blunts arterial baroreflex via the shift of neural arc toward lower sympathetic nerve activity. - PubMed - NCBI [Internet] [cited 2019 Oct 1]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/?term=Kashihara+2004+bezold
  144. 144.
    Robertson RM, Robertson D (1981) The Bezold-Jarisch reflex: possible role in limiting myocardial ischemia. Clin Cardiol. 4(2):75–79PubMedCrossRefGoogle Scholar
  145. 145.
    Mark AL (1983) The Bezold-Jarisch reflex revisited: clinical implications of inhibitory reflexes originating in the heart. J Am Coll Cardiol. 1(1):90–102PubMedCrossRefGoogle Scholar
  146. 146.
    Kinsella SM, Tuckey JP (2001) Perioperative bradycardia and asystole: relationship to vasovagal syncope and the Bezold-Jarisch reflex. Br J Anaesth. 86(6):859–868PubMedCrossRefGoogle Scholar
  147. 147.
    Bezold-Jarisch reflex caused by postural change. - PubMed - NCBI [Internet] [cited 2019 Oct 1]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/?term=kim+2015+bezold
  148. 148.
    Oberg B, White S (1970) The role of vagal cardiac nerves and arterial baroreceptors in the circulatory adjustments to hemorrhage in the cat. Acta Physiol Scand. 80(3):395–403PubMedCrossRefGoogle Scholar
  149. 149.
    Oberg B, Thorén P (1972) Increased activity in left ventricular receptors during hemorrhage or occlusion of caval veins in the cat. A possible cause of the vaso-vagal reaction. Acta Physiol Scand. 85(2):164–173PubMedCrossRefGoogle Scholar
  150. 150.
    Malliani A, Pagani M, Recordati G, Schwartz PJ (1971) Spinal sympathetic reflexes elicited by increases in arterial blood pressure. Am J Physiol. 220(1):128–134PubMedCrossRefGoogle Scholar
  151. 151.
    Malliani A, Recordati G, Schwartz PJ, Pagaui M (1972) Tonic afferent sympathetic activity from the heart. Experientia. 28(3):269–270PubMedCrossRefGoogle Scholar
  152. 152.
    Malliani A, Parks M, Tuckett RP, Brown AM (1973) Reflex increases in heart rate elicited by stimulation of afferent cardiac sympathetic nerve fibers in the cat. Circ Res. 32(1):9–14PubMedGoogle Scholar
  153. 153.
    Malliani A, Recordati G, Schwartz PJ (1973) Nervous activity of afferent cardiac sympathetic fibres with atrial and ventricular endings. J Physiol. 229(2):457–469PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Brown AM (1967) Excitation of afferent cardiac sympathetic nerve fibres during myocardial ischaemia. J Physiol. 190(1):35–53PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Malliani A, Lombardi F (1982) Consideration of the fundamental mechanisms eliciting cardiac pain. Am Heart J. 103(4 Pt 1):575–578PubMedCrossRefGoogle Scholar
  156. 156.
    Reid MR, Dewitt Andrus W (1925) The surgical treatment of angina pectoris. Ann Surg. 81(3):591–604PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Lindgren I, Olivecrona H (1947) Surgical treatment of angina pectoris. J Neurosurg. 4(1):19–39PubMedCrossRefGoogle Scholar
  158. 158.
    White JC (1957) Cardiac pain: anatomic pathways and physiologic mechanisms. Circulation. 16(4):644–655PubMedCrossRefGoogle Scholar
  159. 159.
    Weaver LC, Meckler RL, Fry HK, Donoghue S (1983) Widespread neural excitation initiated from cardiac spinal afferent nerves. Am J Physiol. 245(2):R241–R250PubMedGoogle Scholar
  160. 160.
    Malliani A, Pagani M, Pizzinelli P, Furlan R, Guzzetti S (1983) Cardiovascular reflexes mediated by sympathetic afferent fibers. J Auton Nerv Syst. 7(3–4):295–301PubMedCrossRefGoogle Scholar
  161. 161.
    Gao L, Schultz HD, Patel KP, Zucker IH (2005) Wang W. Augmented input from cardiac sympathetic afferents inhibits baroreflex in rats with heart failure. Hypertension 45(6):1173–1181PubMedCrossRefGoogle Scholar
  162. 162.
    Coote JH (1984 18) Spinal and supraspinal reflex pathways of cardio-cardiac sympathetic reflexes. Neurosci Lett. 46(3):243–247PubMedCrossRefGoogle Scholar
  163. 163.
    Szulczyk A, Szulczyk P, Zywuszko B (1988) Analysis of reflex activity in cardiac sympathetic nerve induced by myelinated phrenic nerve afferents. Brain Res. 447(1):109–115PubMedCrossRefGoogle Scholar
  164. 164.
    Wang H-J, Wang W, Cornish KG, Rozanski GJ, Zucker IH (2014) Cardiac sympathetic afferent denervation attenuates cardiac remodeling and improves cardiovascular dysfunction in rats with heart failure. Hypertension 64(4):745–755PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Wang H-J, Rozanski GJ, Zucker IH (2017) Cardiac sympathetic afferent reflex control of cardiac function in normal and chronic heart failure states. J Physiol. 595(8):2519–2534PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Zhu G-Q, Gao L, Patel KP, Zucker IH, Wang W (2004) ANG II in the paraventricular nucleus potentiates the cardiac sympathetic afferent reflex in rats with heart failure. J Appl Physiol (1985) 97(5):1746–1754CrossRefGoogle Scholar
  167. 167.
    Wang H-J, Zhang F, Zhang Y, Gao X-Y, Wang W, Zhu G-Q (2005) AT1 receptor in paraventricular nucleus mediates the enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure. Auton Neurosci 121(1–2):56–63PubMedCrossRefGoogle Scholar
  168. 168.
    Kimura A, Sato A, Sato Y, Suzuki H (1996) A- and C-reflexes elicited in cardiac sympathetic nerves by single shock to a somatic afferent nerve include spinal and supraspinal components in anesthetized rats. Neurosci Res. 25(1):91–96PubMedCrossRefGoogle Scholar
  169. 169.
    Zhong M-K, Duan Y-C, Chen A-D, Xu B, Gao X-Y, De W et al (2008) Paraventricular nucleus is involved in the central pathway of cardiac sympathetic afferent reflex in rats. Exp Physiol. 93(6):746–753PubMedCrossRefGoogle Scholar
  170. 170.
    Müller UW, Dembowsky K, Czachurski J, Seller H (1988) Tonic descending inhibition of the spinal cardio-sympathetic reflex in the cat. J Auton Nerv Syst. 23(2):111–123PubMedCrossRefGoogle Scholar
  171. 171.
    Wang W, Zucker IH (1996) Cardiac sympathetic afferent reflex in dogs with congestive heart failure. Am J Physiol. 271(3 Pt 2):R751–R756PubMedGoogle Scholar
  172. 172.
    Zucker IH, Pliquett RU (2002) Novel mechanisms of sympatho-excitation in chronic heart failure. Heart Fail Monit. 3(1):2–7PubMedGoogle Scholar
  173. 173.
    Zucker IH, Schultz HD, Li Y-F, Wang Y, Wang W, Patel KP (2004) The origin of sympathetic outflow in heart failure: the roles of angiotensin II and nitric oxide. Prog Biophys Mol Biol. 84(2–3):217–232PubMedCrossRefGoogle Scholar
  174. 174.
    Zhang L, Xiong X-Q, Fan Z-D, Gan X-B, Gao X-Y, Zhu G-Q (2012) Involvement of enhanced cardiac sympathetic afferent reflex in sympathetic activation in early stage of diabetes. J Appl Physiol (1985) 113(1):47–55CrossRefGoogle Scholar
  175. 175.
    Dunlap ME, Bhardwaj A, Hauptman PJ (2015) Autonomic modulation in heart failure: ready for prime time? Curr Cardiol Rep. 17(11):103PubMedCrossRefGoogle Scholar
  176. 176.
    Doba N, Reis DJ (1974) Role of the cerebellum and the vestibular apparatus in regulation of orthostatic reflexes in the cat. Circ Res. 34(1):9–18PubMedCrossRefGoogle Scholar
  177. 177.
    Woodring SF, Rossiter CD, Yates BJ (1997) Pressor response elicited by nose-up vestibular stimulation in cats. Exp Brain Res. 113(1):165–168PubMedCrossRefGoogle Scholar
  178. 178.
    Gotoh TM, Fujiki N, Matsuda T, Gao S, Morita H (2004) Roles of baroreflex and vestibulosympathetic reflex in controlling arterial blood pressure during gravitational stress in conscious rats. Am J Physiol Regul Integr Comp Physiol. 286(1):R25–R30PubMedCrossRefGoogle Scholar
  179. 179.
    Radtke A, Popov K, Bronstein AM, Gresty MA (2000) Evidence for a vestibulo-cardiac reflex in man. Lancet 356(9231):736–737PubMedCrossRefGoogle Scholar
  180. 180.
    Holstein GR, Martinelli GP, Friedrich VL (2011) Anatomical observations of the caudal vestibulo-sympathetic pathway. J Vestib Res Equilib Orientat. 21(1):49–62CrossRefGoogle Scholar
  181. 181.
    Elisevich K, Ciriello J (1988) Vestibular nucleus inputs to paramedian reticulospinal neurons in the cat. Neurosci Lett. 91:1):1–1):6PubMedCrossRefGoogle Scholar
  182. 182.
    Balaban CD, Beryozkin G (1994) Vestibular nucleus projections to nucleus tractus solitarius and the dorsal motor nucleus of the vagus nerve: potential substrates for vestibulo-autonomic interactions. Exp Brain Res. 98(2):200–212PubMedCrossRefGoogle Scholar
  183. 183.
    Yates BJ, Balaban CD, Miller AD, Endo K, Yamaguchi Y (1995) Vestibular inputs to the lateral tegmental field of the cat: potential role in autonomic control. Brain Res. 689(2):197–206PubMedCrossRefGoogle Scholar
  184. 184.
    Porter JD, Balaban CD (1997) Connections between the vestibular nuclei and brain stem regions that mediate autonomic function in the rat. J Vestib Res Equilib Orientat. 7(1):63–76CrossRefGoogle Scholar
  185. 185.
    Miura M, Reis DJ (1971) The paramedian reticular nucleus: a site of inhibitory interaction between projections from fastigial nucleus and carotid sinus nerve acting on blood pressure. J Physiol. 216(2):441–460PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Ishikawa T, Miyazawa T (1980) Sympathetic responses evoked by vestibular stimulation and their interactions with somato-sympathetic reflexes. J Auton Nerv Syst. 1(3):243–254PubMedCrossRefGoogle Scholar
  187. 187.
    Liu F, Inokuchi A, Komiyama S (1997) Neuronal responses to vestibular stimulation in the guinea pig hypothalamic paraventricular nucleus. Eur Arch Otorhinolaryngol 254(2):95–100PubMedCrossRefGoogle Scholar
  188. 188.
    Horii A, Koike K, Uno A, Uno Y, Kubo T (2001) Vestibular modulation of plasma vasopressin levels in rats. Brain Res. 914(1–2):179–184PubMedCrossRefGoogle Scholar
  189. 189.
    Voustianiouk A, Kaufmann H, Diedrich A, Raphan T, Biaggioni I, Macdougall H et al (2006) Electrical activation of the human vestibulo-sympathetic reflex. Exp Brain Res. 171(2):251–261PubMedCrossRefGoogle Scholar
  190. 190.
    Nakamura Y, Matsuo S, Hosogai M, Kawai Y (2009) Vestibular control of arterial blood pressure during head-down postural change in anesthetized rabbits. Exp Brain Res. 194(4):563–570PubMedCrossRefGoogle Scholar
  191. 191.
    Kaufmann H, Biaggioni I, Voustianiouk A, Diedrich A, Costa F, Clarke R et al (2002) Vestibular control of sympathetic activity. An otolith-sympathetic reflex in humans. Exp Brain Res. 143(4):463–469PubMedCrossRefGoogle Scholar
  192. 192.
    Jian BJ, Cotter LA, Emanuel BA, Cass SP, Yates BJ (1999) Effects of bilateral vestibular lesions on orthostatic tolerance in awake cats. J Appl Physiol (1985) 86(5):1552–1560CrossRefGoogle Scholar
  193. 193.
    Hallgren E, Migeotte P-F, Kornilova L, Delière Q, Fransen E, Glukhikh D et al (2015) Dysfunctional vestibular system causes a blood pressure drop in astronauts returning from space. Sci Rep. 5:17627PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Morita H, Abe C, Tanaka K (2016) Long-term exposure to microgravity impairs vestibulo-cardiovascular reflex. Sci Rep. 16(6):33405CrossRefGoogle Scholar
  195. 195.
    Dyckman DJ, Sauder CL, Ray CA (2012) Effects of short-term and prolonged bed rest on the vestibulosympathetic reflex. Am J Physiol Heart Circ Physiol. 302(1):H368–H374PubMedCrossRefGoogle Scholar
  196. 196.
    Aoki M, Sakaida Y, Tanaka K, Mizuta K, Ito Y (2012) Evidence for vestibular dysfunction in orthostatic hypotension. Exp Brain Res. 217(2):251–259PubMedCrossRefGoogle Scholar
  197. 197.
    Whitwam JG (1976) Classification of peripheral nerve fibres. An historical perspective. Anaesthesia. 31(4):494–503PubMedCrossRefGoogle Scholar
  198. 198.
    Sato A, Kaufman A, Koizumi K, Brooks CM (1969) Afferent nerve groups and sympathetic reflex pathways. Brain Res. 14(3):575–587PubMedCrossRefGoogle Scholar
  199. 199.
    Jänig W, Sato A, Schmidt RF (1972) Reflexes in postganglionic cutaneous fibres by stimulation of group I to group IV somatic afferents. Pflugers Arch. 331(3):244–256PubMedCrossRefGoogle Scholar
  200. 200.
    Koizumi K, Collin R, Kaufman A, Brooks CM (1970) Contribution of unmyelinated afferent excitation to sympathetic reflexes. Brain Res. 20(1):99–106PubMedCrossRefGoogle Scholar
  201. 201.
    Sato A (1973) Spinal and medullary reflex components of the somatosympathetic reflex discharges evoked by stimulation of the group IV somatic afferents. Brain Res. 51:307–318PubMedCrossRefGoogle Scholar
  202. 202.
    Morrison SF, Reis DJ (1989) Reticulospinal vasomotor neurons in the RVL mediate the somatosympathetic reflex. Am J Physiol. 256(5 Pt 2):R1084–R1097PubMedGoogle Scholar
  203. 203.
    Goo YS, Kim SJ, Lim W, Kim J (1996) Depressor pathway involved in somatosympathetic reflex in cats. Neurosci Lett. 203(3):187–190PubMedCrossRefGoogle Scholar
  204. 204.
    Dembowsky K, Lackner K, Czachurski J, Seller H (1981) Tonic catecholaminergic inhibition of the spinal somato-sympathetic reflexes originating in the ventrolateral medulla oblongata. J Auton Nerv Syst. 3(2–4):277–290PubMedCrossRefGoogle Scholar
  205. 205.
    Tallarida G, Baldoni F, Peruzzi G, Raimondi G, Massaro M, Sangiorgi M (1981) Cardiovascular and respiratory reflexes from muscles during dynamic and static exercise. J Appl Physiol. 50(4):784–791PubMedCrossRefGoogle Scholar
  206. 206.
    Tibes U (1977) Reflex inputs to the cardiovascular and respiratory centers from dynamically working canine muscles. Some evidence for involvement of group III or IV nerve fibers. Circ Res. 41(3):332–341PubMedCrossRefGoogle Scholar
  207. 207.
    Mitchell JH, Kaufman MP, Iwamoto GA (1983) The exercise pressor reflex: its cardiovascular effects, afferent mechanisms, and central pathways. Annu Rev Physiol. 45:229–242PubMedCrossRefGoogle Scholar
  208. 208.
    Hayes SG, Kaufman MP (2001) Gadolinium attenuates exercise pressor reflex in cats. Am J Physiol Heart Circ Physiol. 280(5):H2153–H2161PubMedCrossRefGoogle Scholar
  209. 209.
    Turner DL (1991) Cardiovascular and respiratory control mechanisms during exercise: an integrated view. J Exp Biol. 160:309–340PubMedGoogle Scholar
  210. 210.
    Selvaraj N, Jaryal AK, Santhosh J, Deepak KK, Anand S (2009) Influence of respiratory rate on the variability of blood volume pulse characteristics. J Med Eng Technol. 33(5):370–375PubMedCrossRefGoogle Scholar
  211. 211.
    Adrian ED, Bronk DW, Phillips G (1932) Discharges in mammalian sympathetic nerves. J Physiol. 74(2):115–133PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Kubin L, Trzebski A, Lipski J (1985) Split medulla preparation in the cat: arterial chemoreceptor reflex and respiratory modulation of the renal sympathetic nerve activity. J Auton Nerv Syst. 12(2–3):211–225PubMedCrossRefGoogle Scholar
  213. 213.
    Baekey DM, Dick TE, Paton JFR (2008) Pontomedullary transection attenuates central respiratory modulation of sympathetic discharge, heart rate and the baroreceptor reflex in the in situ rat preparation. Exp Physiol. 93(7):803–816PubMedCrossRefGoogle Scholar
  214. 214.
    Freyschuss U, Melcher A (1976) Respiratory sinus arrhythmia in man: relation to cardiovascular pressures. Acta Physiol Scand Suppl 435:II, 9pPubMedGoogle Scholar
  215. 215.
    Respiratory variations of the heart rate - I—The reflex mechanism of the respiratory arrhythmia | Proceedings of the Royal Society of London. Series B - Biological Sciences [Internet] [cited 2019 Oct 1]. Available from: https://royalsocietypublishing.org/doi/abs/10.1098/rspb.1936.0005
  216. 216.
    Respiratory variations of the heart rate - II—The central mechanism of the respiratory arrhythmia and the inter-relations between the central and the reflex mechanisms | Proceedings of the Royal Society of London. Series B - Biological Sciences [Internet] [cited 2019 Oct 1]. Available from: https://royalsocietypublishing.org/doi/abs/10.1098/rspb.1936.0006
  217. 217.
    Pilowsky P, Wakefield B, Minson J, Llewellyn-Smith I, Chalmers J (1992) Axonal projections from respiratory centres towards the rostral ventrolateral medulla in the rat. Clin Exp Pharmacol Physiol. 19(5):335–338PubMedCrossRefGoogle Scholar
  218. 218.
    Sun QJ, Minson J, Llewellyn-Smith IJ, Arnolda L, Chalmers J, Pilowsky P (1997) Bötzinger neurons project towards bulbospinal neurons in the rostral ventrolateral medulla of the rat. J Comp Neurol. 388(1):23–31PubMedCrossRefGoogle Scholar
  219. 219.
    Mandel DA, Schreihofer AM (2006) Central respiratory modulation of barosensitive neurones in rat caudal ventrolateral medulla. J Physiol. 572(Pt 3):881–896PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Farmer DGS, Dutschmann M, Paton JFR, Pickering AE, McAllen RM (2016) Brainstem sources of cardiac vagal tone and respiratory sinus arrhythmia. J Physiol 594(24):7249–7265PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Paton JF (1998) Pattern of cardiorespiratory afferent convergence to solitary tract neurons driven by pulmonary vagal C-fiber stimulation in the mouse. J Neurophysiol. 79(5):2365–2373PubMedCrossRefGoogle Scholar
  222. 222.
    Katona PG, Jih F (1975) Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol. 39(5):801–805PubMedCrossRefGoogle Scholar
  223. 223.
    Yasuma F, Hayano J-I (2004) Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest. 125(2):683–690PubMedCrossRefGoogle Scholar
  224. 224.
    Bernardi L, Keller F, Sanders M, Reddy PS, Griffith B, Meno F et al (1989) Respiratory sinus arrhythmia in the denervated human heart. J Appl Physiol (1985) 67(4):1447–1455CrossRefGoogle Scholar
  225. 225.
    Taha BH, Simon PM, Dempsey JA, Skatrud JB, Iber C (1995) Respiratory sinus arrhythmia in humans: an obligatory role for vagal feedback from the lungs. J Appl Physiol (1985) 78(2):638–645CrossRefGoogle Scholar
  226. 226.
    Karemaker JM (2009) Counterpoint: respiratory sinus arrhythmia is due to the baroreflex mechanism. J Appl Physiol (1985) 106(5):1742–1743; discussion 1744CrossRefGoogle Scholar
  227. 227.
    Campbell HA, Taylor EW, Egginton S (2005) Does respiratory sinus arrhythmia occur in fishes? Biol Lett. 1(4):484–487PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Campbell HA, Leite CAC, Wang T, Skals M, Abe AS, Egginton S et al (2006) Evidence for a respiratory component, similar to mammalian respiratory sinus arrhythmia, in the heart rate variability signal from the rattlesnake, Crotalus durissus terrificus. J Exp Biol. 209(Pt 14):2628–2636PubMedCrossRefGoogle Scholar
  229. 229.
    Hayano J, Yasuma F, Okada A, Mukai S, Fujinami T (1996) Respiratory sinus arrhythmia. A phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation. 94(4):842–847PubMedCrossRefGoogle Scholar
  230. 230.
    Hayano J, Yasuma F (2003) Hypothesis: respiratory sinus arrhythmia is an intrinsic resting function of cardiopulmonary system. Cardiovasc Res. 58(1):1–9PubMedCrossRefGoogle Scholar
  231. 231.
    Giardino ND, Glenny RW, Borson S, Chan L (2003) Respiratory sinus arrhythmia is associated with efficiency of pulmonary gas exchange in healthy humans. Am J Physiol Heart Circ Physiol. 284(5):H1585–H1591PubMedCrossRefGoogle Scholar
  232. 232.
    Tzeng YC, Larsen PD, Galletly DC (2007) Effects of hypercapnia and hypoxemia on respiratory sinus arrhythmia in conscious humans during spontaneous respiration. Am J Physiol Heart Circ Physiol. 292(5):H2397–H2407PubMedCrossRefGoogle Scholar
  233. 233.
    Tzeng YC, Sin PYW, Galletly DC (2009) Human sinus arrhythmia: inconsistencies of a teleological hypothesis. Am J Physiol Heart Circ Physiol. 296(1):H65–H70PubMedCrossRefGoogle Scholar
  234. 234.
    Buchheit M (2010) Respiratory sinus arrhythmia and pulmonary gas exchange efficiency: time for a reappraisal. Exp Physiol. 95(7):767PubMedCrossRefGoogle Scholar
  235. 235.
    Elstad M, Toska K, Chon KH, Raeder EA, Cohen RJ (2001) Respiratory sinus arrhythmia: opposite effects on systolic and mean arterial pressure in supine humans. J Physiol. 536(Pt 1):251–259PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Elstad M, Walløe L, Holme NLA, Maes E, Thoresen M (2015) Respiratory sinus arrhythmia stabilizes mean arterial blood pressure at high-frequency interval in healthy humans. Eur J Appl Physiol. 115(3):521–530PubMedCrossRefGoogle Scholar
  237. 237.
    Kollai M, Mizsei G (1990) Respiratory sinus arrhythmia is a limited measure of cardiac parasympathetic control in man. J Physiol. 424:329–342PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Mackay JD (1983) Respiratory sinus arrhythmia in diabetic neuropathy. Diabetologia. 24(4):253–256PubMedCrossRefGoogle Scholar
  239. 239.
    Grassman E, Blomqvist CG (1983) Absence of respiratory sinus arrhythmia: a manifestation of the sick sinus syndrome. Clin Cardiol. 6(4):151–154PubMedCrossRefGoogle Scholar
  240. 240.
    De Meersman RE (1993) Heart rate variability and aerobic fitness. Am Heart J. 125(3):726–731PubMedCrossRefGoogle Scholar
  241. 241.
    Yasuma F, Hayano J (2001) Augmentation of respiratory sinus arrhythmia in response to progressive hypercapnia in conscious dogs. Am J Physiol Heart Circ Physiol. 280(5):H2336–H2341PubMedCrossRefGoogle Scholar
  242. 242.
    Sasano N, Vesely AE, Hayano J, Sasano H, Somogyi R, Preiss D et al (2002) Direct effect of Pa(CO2) on respiratory sinus arrhythmia in conscious humans. Am J Physiol Heart Circ Physiol. 282(3):H973–H976PubMedCrossRefGoogle Scholar
  243. 243.
    Berntson GG, Cacioppo JT, Quigley KS (1993) Respiratory sinus arrhythmia: autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology. 30(2):183–196PubMedCrossRefGoogle Scholar
  244. 244.
    Pomfrett CJ, Barrie JR, Healy TE (1993) Respiratory sinus arrhythmia: an index of light anaesthesia. Br J Anaesth. 71(2):212–217PubMedCrossRefGoogle Scholar
  245. 245.
    Wardlaw JM (1985) Respiratory sinus arrhythmia and the vagus. Lancet 1(8440):1268–1269PubMedCrossRefGoogle Scholar
  246. 246.
    Zoccal DB (2015) Peripheral chemoreceptors and cardiorespiratory coupling: a link to sympatho-excitation. Exp Physiol. 100(2):143–148PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Haymet BT, McCloskey DI (1975) Baroreceptor and chemoreceptor influences on heart rate during the respiratory cycle in the dog. J Physiol. 245(3):699–712PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Davis AL, McCloskey DI, Potter EK (1977) Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart rate through the sympathetic nervous system. J Physiol. 272(3):691–703PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Gandevia SC, McCloskey DI, Potter EK (1978) Inhibition of baroreceptor and chemoreceptor reflexes on heart rate by afferents from the lungs. J Physiol. 276:369–381PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Potter EK (1981) Inspiratory inhibition of vagal responses to baroreceptor and chemoreceptor stimuli in the dog. J Physiol. 316:177–190PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Trzebski A, Raczkowska M, Kubin L (1980) Carotid baroreceptor reflex in man, its modulation over the respiratory cycle. Acta Neurobiol Exp (Warsz). 40(5):807–820Google Scholar
  252. 252.
    Grunstein MM, Derenne JP, Milic-Emili J (1975) Control of depth and frequency of breathing during baroreceptor stimulation in cats. J Appl Physiol. 39(3):395–404PubMedCrossRefGoogle Scholar
  253. 253.
    Brunner MJ, Sussman MS, Greene AS, Kallman CH, Shoukas AA (1982) Carotid sinus baroreceptor reflex control of respiration. Circ Res. 51(5):624–636PubMedCrossRefGoogle Scholar
  254. 254.
    Baekey DM, Molkov YI, Paton JFR, Rybak IA, Dick TE (2010) Effect of baroreceptor stimulation on the respiratory pattern: insights into respiratory-sympathetic interactions. Respir Physiol Neurobiol. 174(1–2):135–145PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Galletly DC, Larsen PD (1997) Cardioventilatory coupling during anaesthesia. Br J Anaesth. 79(1):35–40PubMedCrossRefGoogle Scholar
  256. 256.
    Cysarz D, Bettermann H, Lange S, Geue D, van Leeuwen P (2004) A quantitative comparison of different methods to detect cardiorespiratory coordination during night-time sleep. Biomed Eng. 3(1):44Google Scholar
  257. 257.
    Chien S (1967) Role of the sympathetic nervous system in hemorrhage. Physiol Rev. 47(2):214–288PubMedCrossRefGoogle Scholar
  258. 258.
    Watts DT (1956) Arterial blood epinephrine levels during hemorrhagic hypotension in dogs. Am J Physiol. 184(2):271–274PubMedCrossRefGoogle Scholar
  259. 259.
    Schadt JC, Ludbrook J (1991) Hemodynamic and neurohumoral responses to acute hypovolemia in conscious mammals. Am J Physiol. 260(2 Pt 2):H305–H318PubMedGoogle Scholar
  260. 260.
    Blaber AP, Hinghofer-Szalkay H, Goswami N (2013) Blood volume redistribution during hypovolemia. Aviat Space Environ Med. 84(1):59–64PubMedCrossRefGoogle Scholar
  261. 261.
    Yadav K, Singh A, Jaryal AK, Coshic P, Chatterjee K, Deepak KK (2017) Modulation of cardiac autonomic tone in non-hypotensive hypovolemia during blood donation. J Clin Monit Comput. 31(4):739–746PubMedCrossRefGoogle Scholar
  262. 262.
    Alexander RS, Wiggers CJ (1953) Cardiac factors of safety. Circ Res. 1(2):99–101PubMedCrossRefGoogle Scholar
  263. 263.
    Oren RM, Schobel HP, Weiss RM, Stanford W, Ferguson DW (1993) Importance of left atrial baroreceptors in the cardiopulmonary baroreflex of normal humans. J Appl Physiol (1985) 74(6):2672–2680CrossRefGoogle Scholar
  264. 264.
    Gupta PD, Henry JP, Sinclair R, Von Baumgarten R (1966) Responses of atrial and aortic baroreceptors to nonhypotensive hemorrhage and to tranfusion. Am J Physiol. 211(6):1429–1437PubMedCrossRefGoogle Scholar
  265. 265.
    Lowell BB (2019) New neuroscience of homeostasis and drives for food, water, and salt. N Engl J Med 380(5):459–471PubMedCrossRefGoogle Scholar
  266. 266.
    Kinsman BJ, Nation HN, Stocker SD (2017) Hypothalamic signaling in body fluid homeostasis and hypertension. Curr Hypertens Rep. 19(6):50PubMedCrossRefGoogle Scholar
  267. 267.
    Augustine V, Gokce SK, Lee S, Wang B, Davidson TJ, Reimann F et al (2018) Hierarchical neural architecture underlying thirst regulation. Nature 555(7695):204–209PubMedPubMedCentralCrossRefGoogle Scholar
  268. 268.
    McKinley MJ, Yao ST, Uschakov A, McAllen RM, Rundgren M, Martelli D (2015) The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis. Acta Physiol (Oxf) 214(1):8–32CrossRefGoogle Scholar
  269. 269.
    Matsuda T, Hiyama TY, Niimura F, Matsusaka T, Fukamizu A, Kobayashi K et al (2017) Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ. Nat Neurosci. 20(2):230–241PubMedCrossRefGoogle Scholar
  270. 270.
    Vivas L, Godino A, Dalmasso C, Caeiro XE, Macchione AF, Cambiasso MJ (2014) Neurochemical Circuits Subserving Fluid Balance and Baroreflex: A Role for Serotonin, Oxytocin, and Gonadal Steroids. In: De Luca LA, Menani JV, Johnson AK, editors. Neurobiology of body fluid homeostasis: transduction and integration [Internet]. CRC Press/Taylor & Francis, Boca Raton [cited 2019 Oct 15]. (Frontiers in Neuroscience). Available from: http://www.ncbi.nlm.nih.gov/books/NBK200961/
  271. 271.
    Menani JV, De Luca LA, Johnson AK (2014) Role of the lateral parabrachial nucleus in the control of sodium appetite. Am J Physiol Regul Integr Comp Physiol. 306(4):R201–R210PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Schiller AM, Howard JT, Convertino VA (2017) The physiology of blood loss and shock: new insights from a human laboratory model of hemorrhage. Exp Biol Med (Maywood) 242(8):874–883CrossRefGoogle Scholar
  273. 273.
    Evans RG, Ludbrook J, Woods RL, Casley D (1991) Influence of higher brain centres and vasopressin on the haemodynamic response to acute central hypovolaemia in rabbits. J Auton Nerv Syst. 35(1):1–14PubMedCrossRefGoogle Scholar
  274. 274.
    Troy BP, Heslop DJ, Bandler R, Keay KA (2003) Haemodynamic response to haemorrhage: distinct contributions of midbrain and forebrain structures. Auton Neurosci Basic Clin. 108(1–2):1–11CrossRefGoogle Scholar
  275. 275.
    Cameron AA, Khan IA, Westlund KN, Cliffer KD, Willis WD (1995) The efferent projections of the periaqueductal gray in the rat: a Phaseolus vulgaris-leucoagglutinin study. I. Ascending projections. J Comp Neurol. 351(4):568–584PubMedCrossRefGoogle Scholar
  276. 276.
    Henderson LA, Keay KA, Bandler R (1998) The ventrolateral periaqueductal gray projects to caudal brainstem depressor regions: a functional-anatomical and physiological study. Neuroscience. 82(1):201–221PubMedCrossRefGoogle Scholar
  277. 277.
    Lovick TA (1992) Inhibitory modulation of the cardiovascular defence response by the ventrolateral periaqueductal grey matter in rats. Exp Brain Res. 89(1):133–139PubMedCrossRefGoogle Scholar
  278. 278.
    Keay KA, Bandler R (2001) Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci Biobehav Rev. 25(7–8):669–678PubMedCrossRefGoogle Scholar
  279. 279.
    Xiang L, Hinojosa-Laborde C, Ryan KL, Rickards CA, Convertino VA (2018) Time course of compensatory physiological responses to central hypovolemia in high- and low-tolerant human subjects. Am J Physiol Regul Integr Comp Physiol 315(2):R408–R416PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Ashok Kumar Jaryal
    • 1
    Email author
  • Akanksha Singh
    • 1
  • Kishore Kumar Deepak
    • 1
  1. 1.Department of PhysiologyAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations