Neurophysiology of Heart

  • Ashok Kumar JaryalEmail author
  • Akanksha Singh
  • Kishore Kumar Deepak
Part of the Physiology in Clinical Neurosciences – Brain and Spinal Cord Crosstalks book series (PNBSCC)


Heart occupies a special place in our life, and physiologically, it is central to the functions of the cardiovascular system. The heart has inherent ability to generate its own rhythm and modulate its functions. The neural centres in the medulla integrate the afferent information from cardiovascular system with the modulatory signals from the cortical and sub-cortical neural regions to control the rate, rhythm and contracility of the heart. The sympathetic and parasympathetic nerves innervate the heart and form a network of plexuses with the intrinsic cardiac nervous system. These sympathetic and parasympathetic drives are modulated to operate in antagonistic, synergistic and temporally sequenced mode in context-specific patterns. The overall neural organization ensures that the functioning of the heart is modulated to synchronize it with the overall scheme of homeostasis and to support the ongoing physical and emotional components of motivated behaviour.



The concepts and information presented in this chapter have been drawn from the research reports of hundreds of scientists from countless laboratories over last century, only a few of whom have been referred directly. We have made efforts to compile diverse and detailed data into simple unifying notions, to be able to visualize forest without losing sight of the trees.


  1. 1.
    Ardell JL, Armour JA (2016) Neurocardiology: structure-based function. Compr Physiol 6(4):1635–1653PubMedCrossRefGoogle Scholar
  2. 2.
    Alexander RS (1946) Tonic and reflex functions of medullary sympathetic cardiovascular centers. J Neurophysiol [Internet] [cited 2019 Aug 25] 9(3):205–217. Available from:
  3. 3.
    Willette RN, Barcas PP, Krieger AJ, Sapru HN (1983) Vasopressor and depressor areas in the rat medulla. Identification by microinjection of L-glutamate. Neuropharmacology 22(9):1071–1079PubMedCrossRefGoogle Scholar
  4. 4.
    Campos RR, Carillo BA, Oliveira-Sales EB, Silva AM, Silva NF, Futuro Neto HA et al (2008) Role of the caudal pressor area in the regulation of sympathetic vasomotor tone. Braz J Med Biol Res 41(7):557–562PubMedCrossRefGoogle Scholar
  5. 5.
    Ross CA, Ruggiero DA, Reis DJ (1985) Projections from the nucleus tractus solitarii to the rostral ventrolateral medulla. J Comp Neurol 242(4):511–534PubMedCrossRefGoogle Scholar
  6. 6.
    Guyenet PG, Stornetta RL, Bochorishvili G, Depuy SD, Burke PGR, Abbott SBG (2013) C1 neurons: the body’s EMTs. Am J Physiol Regul Integr Comp Physiol 305(3):R187–R204PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Blessing WW (1988) Depressor neurons in rabbit caudal medulla act via GABA receptors in rostral medulla. Am J Physiol [Internet] [cited 2019 Aug 25] 254(4):H686–H692. Available from:
  8. 8.
    Jeske I, Reis DJ, Milner TA (1995) Neurons in the barosensory area of the caudal ventrolateral medulla project monosynaptically on to sympathoexcitatory bulbospinal neurons in the rostral ventrolateral medulla. Neuroscience [Internet] [cited 2019 Aug 25] 65(2):343–353. Available from:
  9. 9.
    McAllen RM, May CN, Shafton AD (1995) Functional anatomy of sympathetic premotor cell groups in the medulla. Clin Exp Hypertens 17(1–2):209–221PubMedCrossRefGoogle Scholar
  10. 10.
    Mueller PJ, Mischel NA, Scislo TJ (2011) Differential activation of adrenal, renal, and lumbar sympathetic nerves following stimulation of the rostral ventrolateral medulla of the rat. Am J Physiol Regul Integr Comp Physiol 300(5):R1230–R1240PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Guyenet PG, Haselton JR, Sun MK (1989) Sympathoexcitatory neurons of the rostroventrolateral medulla and the origin of the sympathetic vasomotor tone. Prog Brain Res 81:105–116PubMedCrossRefGoogle Scholar
  12. 12.
    Moraes DJA, da Silva MP, Bonagamba LGH, Mecawi AS, Zoccal DB, Antunes-Rodrigues J et al (2013) Electrophysiological properties of rostral ventrolateral medulla presympathetic neurons modulated by the respiratory network in rats. J Neurosci 33(49):19223–19237PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Almado CEL, Leao RM, Machado BH (2014) Intrinsic properties of rostral ventrolateral medulla presympathetic and bulbospinal respiratory neurons of juvenile rats are not affected by chronic intermittent hypoxia. Exp Physiol 99(7):937–950PubMedCrossRefGoogle Scholar
  14. 14.
    Accorsi-Mendonca D, da Silva MP, Souza GMPR, Lima-Silveira L, Karlen-Amarante M, Amorim MR et al (2016) Pacemaking property of RVLM presympathetic neurons. Front Physiol 7:424PubMedPubMedCentralGoogle Scholar
  15. 15.
    Dampney RAL, Horiuchi J, Tagawa T, Fontes MAP, Potts PD, Polson JW (2003) Medullary and supramedullary mechanisms regulating sympathetic vasomotor tone. Acta Physiol Scand 177(3):209–218PubMedCrossRefGoogle Scholar
  16. 16.
    Ruggiero DA, Cravo SL, Arango V, Reis DJ (1989) Central control of the circulation by the rostral ventrolateral reticular nucleus: anatomical substrates. Prog Brain Res 81:49–79PubMedCrossRefGoogle Scholar
  17. 17.
    Dampney RA (1994) Functional organization of central pathways regulating the cardiovascular system. Physiol Rev [Internet] [cited 2019 Aug 25] 74(2):323–364. Available from:
  18. 18.
    Spyer KM (1994) Annual review prize lecture. Central nervous mechanisms contributing to cardiovascular control. J Physiol 474(1):1–19PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Barman SM, Gebber GL, Orer HS (2000) Medullary lateral tegmental field: an important source of basal sympathetic nerve discharge in the cat. Am J Physiol Regul Integr Comp Physiol 278(4):R995–R1004PubMedCrossRefGoogle Scholar
  20. 20.
    Hancock MB (1988) Evidence for direct projections from the nucleus of the solitary tract onto medullary adrenaline cells. J Comp Neurol [Internet] [cited 2019 Aug 25] 276(3):460–467. Available from:
  21. 21.
    Morilak DA, Somogyi P, McIlhinney RA, Chalmers J (1989) An enkephalin-containing pathway from nucleus tractus solitarius to the pressor area of the rostral ventrolateral medulla of the rabbit. Neuroscience [Internet] [cited 2019 Aug 25] 31(1):187–194. Available from:
  22. 22.
    Ermirio R, Ruggeri P, Molinari C, Weaver LC (1993) Somatic and visceral inputs to neurons of the rostral ventrolateral medulla. Am J Physiol 265(1 Pt 2):R35–R40PubMedGoogle Scholar
  23. 23.
    Gao J, Zhang F, Sun H-J, Liu T-Y, Ding L, Kang Y-M et al (2014) Transneuronal tracing of central autonomic regions involved in cardiac sympathetic afferent reflex in rats. J Neurol Sci 342(1–2):45–51PubMedCrossRefGoogle Scholar
  24. 24.
    Holstein GR, Friedrich VLJ, Martinelli GP (2016) Glutamate and GABA in vestibulo-sympathetic pathway neurons. Front Neuroanat 10:7PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Cai Y-L, Ma W-L, Wang J-Q, Li Y-Q, Li M (2008) Excitatory pathways from the vestibular nuclei to the NTS and the PBN and indirect vestibulo-cardiovascular pathway from the vestibular nuclei to the RVLM relayed by the NTS. Brain Res 1240:96–104PubMedCrossRefGoogle Scholar
  26. 26.
    Padley JR, Kumar NN, Li Q, Nguyen TBV, Pilowsky PM, Goodchild AK (2007) Central command regulation of circulatory function mediated by descending pontine cholinergic inputs to sympathoexcitatory rostral ventrolateral medulla neurons. Circ Res 100(2):284–291PubMedCrossRefGoogle Scholar
  27. 27.
    Kubo T, Hagiwara Y, Sekiya D, Fukumori R (1998) Evidence for involvement of the lateral parabrachial nucleus in mediation of cholinergic inputs to neurons in the rostral ventrolateral medulla of the rat. Brain Res 789(1):23–31PubMedCrossRefGoogle Scholar
  28. 28.
    Miura M, Takayama K (1991) Circulatory and respiratory responses to glutamate stimulation of the lateral parabrachial nucleus of the cat. J Auton Nerv Syst 32(2):121–133PubMedCrossRefGoogle Scholar
  29. 29.
    Bou Farah L, Bowman BR, Bokiniec P, Karim S, Le S, Goodchild AK et al (2016) Somatostatin in the rat rostral ventrolateral medulla: Origins and mechanism of action. J Comp Neurol 524(2):323–342PubMedCrossRefGoogle Scholar
  30. 30.
    Bago M, Marson L, Dean C (2002) Serotonergic projections to the rostroventrolateral medulla from midbrain and raphe nuclei. Brain Res 945(2):249–258PubMedCrossRefGoogle Scholar
  31. 31.
    Hayes K, Weaver LC (1992) Tonic sympathetic excitation and vasomotor control from pontine reticular neurons. Am J Physiol 263(5 Pt 2):H1567–H1575PubMedGoogle Scholar
  32. 32.
    Krassioukov AV, Weaver LC (1993) Connections between the pontine reticular formation and rostral ventrolateral medulla. Am J Physiol 265(4 Pt 2):H1386–H1392PubMedGoogle Scholar
  33. 33.
    Hayes K, Calaresu FR, Weaver LC (1994) Pontine reticular neurons provide tonic excitation to neurons in rostral ventrolateral medulla in rats. Am J Physiol 266(1 Pt 2):R237–R244PubMedGoogle Scholar
  34. 34.
    Verberne AJ, Lam W, Owens NC, Sartor D (1997) Supramedullary modulation of sympathetic vasomotor function. Clin Exp Pharmacol Physiol 24(9–10):748–754PubMedCrossRefGoogle Scholar
  35. 35.
    Verberne AJ (1995) Cuneiform nucleus stimulation produces activation of medullary sympathoexcitatory neurons in rats. Am J Physiol 268(3 Pt 2):R752–R758PubMedGoogle Scholar
  36. 36.
    Korte SM, Jaarsma D, Luiten PG, Bohus B (1992) Mesencephalic cuneiform nucleus and its ascending and descending projections serve stress-related cardiovascular responses in the rat. J Auton Nerv Syst 41(1–2):157–176PubMedCrossRefGoogle Scholar
  37. 37.
    Dempsey B, Le S, Turner A, Bokiniec P, Ramadas R, Bjaalie JG et al (2017) Mapping and analysis of the connectome of sympathetic premotor neurons in the rostral ventrolateral medulla of the rat using a volumetric brain atlas. Front Neural Circuits 11:9PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Gao H-R, Zhuang Q-X, Li B, Li H-Z, Chen Z-P, Wang J-J, et al (2016) Corticotropin releasing factor excites neurons of posterior hypothalamic nucleus to produce tachycardia in rats. Sci Rep [Internet] 6(1):20206. Available from:
  39. 39.
    Kc P, Dick TE (2010) Modulation of cardiorespiratory function mediated by the paraventricular nucleus. Respir Physiol Neurobiol 174(1–2):55–64PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Chen Q-H, Toney GM (2010) In vivo discharge properties of hypothalamic paraventricular nucleus neurons with axonal projections to the rostral ventrolateral medulla. J Neurophysiol 103(1):4–15PubMedCrossRefGoogle Scholar
  41. 41.
    Lee SK, Ryu PD, Lee SY (2013) Differential distributions of neuropeptides in hypothalamic paraventricular nucleus neurons projecting to the rostral ventrolateral medulla in the rat. Neurosci Lett 556:160–165PubMedCrossRefGoogle Scholar
  42. 42.
    Koba S, Hanai E, Kumada N, Kataoka N, Nakamura K, Watanabe T (2018) Sympathoexcitation by hypothalamic paraventricular nucleus neurons projecting to the rostral ventrolateral medulla. J Physiol. 596(19):4581–4595PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Korim WS, Bou Farah L, McMullan S, Verberne AJM (2014) Orexinergic activation of medullary premotor neurons modulates the adrenal sympathoexcitation to hypothalamic glucoprivation. Diabetes 63(6):1895–1906PubMedCrossRefGoogle Scholar
  44. 44.
    Horiuchi J, McAllen RM, Allen AM, Killinger S, Fontes MAP, Dampney RAL (2004) Descending vasomotor pathways from the dorsomedial hypothalamic nucleus: role of medullary raphe and RVLM. Am J Physiol Regul Integr Comp Physiol 287(4):R824–R832PubMedCrossRefGoogle Scholar
  45. 45.
    Fontes MA, Tagawa T, Polson JW, Cavanagh SJ, Dampney RA (2001) Descending pathways mediating cardiovascular response from dorsomedial hypothalamic nucleus. Am J Physiol Heart Circ Physiol 280(6):H2891–H2901PubMedCrossRefGoogle Scholar
  46. 46.
    Wang R, Koganezawa T, Terui N (2010) Differential responses of sympathetic premotor neurons in the rostral ventrolateral medulla to stimulation of the dorsomedial hypothalamus in rabbits. Brain Res 1356:44–53PubMedCrossRefGoogle Scholar
  47. 47.
    Saha S, Drinkhill MJ, Moore JP, Batten TFC (2005) Central nucleus of amygdala projections to rostral ventrolateral medulla neurones activated by decreased blood pressure. Eur J Neurosci 21(7):1921–1930PubMedCrossRefGoogle Scholar
  48. 48.
    Chapp AD, Gui L, Huber MJ, Liu J, Larson RA, Zhu J et al (2014) Sympathoexcitation and pressor responses induced by ethanol in the central nucleus of amygdala involves activation of NMDA receptors in rats. Am J Physiol Heart Circ Physiol 307(5):H701–H709PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Barman SM (1990) Descending projections of hypothalamic neurons with sympathetic nerve-related activity. J Neurophysiol 64(3):1019–1032PubMedCrossRefGoogle Scholar
  50. 50.
    Johnson PL, Lightman SL, Lowry CA (2004) A functional subset of serotonergic neurons in the rat ventrolateral periaqueductal gray implicated in the inhibition of sympathoexcitation and panic. Ann N Y Acad Sci 1018:58–64PubMedCrossRefGoogle Scholar
  51. 51.
    Owens NC, Verberne AJ (2000) Medial prefrontal depressor response: involvement of the rostral and caudal ventrolateral medulla in the rat. J Auton Nerv Syst 78(2–3):86–93PubMedCrossRefGoogle Scholar
  52. 52.
    Burke PGR, Neale J, Korim WS, McMullan S, Goodchild AK (2011) Patterning of somatosympathetic reflexes reveals nonuniform organization of presympathetic drive from C1 and non-C1 RVLM neurons. Am J Physiol Regul Integr Comp Physiol 301(4):R1112–R1122PubMedCrossRefGoogle Scholar
  53. 53.
    Amendt K, Czachurski J, Dembowsky K, Seller H (1979) Bulbospinal projections to the intermediolateral cell column: a neuroanatomical study. J Auton Nerv Syst 1(1):103–107PubMedCrossRefGoogle Scholar
  54. 54.
    Ross CA, Armstrong DM, Ruggiero DA, Pickel VM, Joh TH, Reis DJ (1981) Adrenaline neurons in the rostral ventrolateral medulla innervate thoracic spinal cord: a combined immunocytochemical and retrograde transport demonstration. Neurosci Lett [Internet] [cited 2019 Aug 25] 25(3):257–262. Available from:
  55. 55.
    Barman SM, Gebber GL (1985) Axonal projection patterns of ventrolateral medullospinal sympathoexcitatory neurons. J Neurophysiol 53(6):1551–1566PubMedCrossRefGoogle Scholar
  56. 56.
    McAllen RM (1986) Identification and properties of sub-retrofacial bulbospinal neurones: a descending cardiovascular pathway in the cat. J Auton Nerv Syst 17(2):151–164PubMedCrossRefGoogle Scholar
  57. 57.
    Morrison SF, Milner TA, Reis DJ (1988) Reticulospinal vasomotor neurons of the rat rostral ventrolateral medulla: relationship to sympathetic nerve activity and the C1 adrenergic cell group. J Neurosci [Internet] [cited 2019 Aug 25] 8(4):1286–1301. Available from:
  58. 58.
    Granata AR, Ruggiero DA (1998) Evidence of disynaptic projections from the rostral ventrolateral medulla to the thoracic spinal cord. Brain Res 781(1–2):329–334PubMedCrossRefGoogle Scholar
  59. 59.
    Oshima N, Kumagai H, Onimaru H, Kawai A, Pilowsky PM, Iigaya K et al (2008) Monosynaptic excitatory connection from the rostral ventrolateral medulla to sympathetic preganglionic neurons revealed by simultaneous recordings. Hypertens Res 31(7):1445–1454PubMedCrossRefGoogle Scholar
  60. 60.
    Deuchars SA, Spyer KM, Gilbey MP (1997) Stimulation within the rostral ventrolateral medulla can evoke monosynaptic GABAergic IPSPs in sympathetic preganglionic neurons in vitro. J Neurophysiol 77(1):229–235PubMedCrossRefGoogle Scholar
  61. 61.
    Cravo SL, Possas OS, Ferreira-Neto ML (2003) Rostral ventrolateral medulla: an integrative site for muscle vasodilation during defense-alerting reactions. Cell Mol Neurobiol 23(4–5):579–595PubMedCrossRefGoogle Scholar
  62. 62.
    Füzesi T, Wittmann G, Liposits Z, Lechan RM, Fekete C (2007) Contribution of noradrenergic and adrenergic cell groups of the brainstem and agouti-related protein-synthesizing neurons of the arcuate nucleus to neuropeptide-Y innervation of corticotropin-releasing hormone neurons in hypothalamic paraventricular nucleus of the rat. Endocrinology [Internet] [cited 2019 Aug 25] 148(11):5442–5450. Available from:
  63. 63.
    Menani JV, Vieira AA, Colombari DSA, De Paula PM, Colombari E, De Luca LALA (2014) Preoptic-periventricular integrative mechanisms involved in behavior, fluid-electrolyte balance, and pressor responses. In: De Luca LALA, Menani JV, Johnson AK (eds) Neurobiology of body fluid homeostasis. Taylor & Francis, Boca RatonGoogle Scholar
  64. 64.
    Huangfu D, Verberne AJ, Guyenet PG (1992) Rostral ventrolateral medullary neurons projecting to locus coeruleus have cardiorespiratory inputs. Brain Res [Internet] [cited 2019 Aug 25] 598(1–2):67–75. Available from:
  65. 65.
    Holloway BB, Stornetta RL, Bochorishvili G, Erisir A, Viar KE, Guyenet PG (2013) Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice. J Neurosci 33(48):18792–18805PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Abbott SBG, DePuy SD, Nguyen T, Coates MB, Stornetta RL, Guyenet PG (2013) Selective optogenetic activation of rostral ventrolateral medullary catecholaminergic neurons produces cardiorespiratory stimulation in conscious mice. J Neurosci 33(7):3164–3177PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Turner A, Kumar N, Farnham M, Lung M, Pilowsky P, McMullan S (2013) Rostroventrolateral medulla neurons with commissural projections provide input to sympathetic premotor neurons: anatomical and functional evidence. Eur J Neurosci 38(4):2504–2515PubMedCrossRefGoogle Scholar
  68. 68.
    McAllen RM, Spyer KM (1978) Two types of vagal preganglionic motoneurones projecting to the heart and lungs. J Physiol 282:353–364PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Gunn CG, Sevelius G, Puiggari J, Myers FK (1968) Vagal cardiomotor mechanisms in the hindbrain of the dog and cat. Am J Physiol 214(2):258–262PubMedCrossRefGoogle Scholar
  70. 70.
    McAllen RM, Spyer KM (1976) The location of cardiac vagal preganglionic motoneurones in the medulla of the cat. J Physiol 258(1):187–204PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Geis GS, Wurster RD (1980) Horseradish peroxidase localization of cardiac vagal preganglionic somata. Brain Res 182(1):19–30PubMedCrossRefGoogle Scholar
  72. 72.
    Bennett JA, Kidd C, Latif AB, McWilliam PN (1981) A horseradish peroxidase study of vagal motoneurones with axons in cardiac and pulmonary branches of the cat and dog. Q J Exp Physiol 66(2):145–154PubMedCrossRefGoogle Scholar
  73. 73.
    Hsieh JH, Wu JJ, Yen CT, Chai CY (1998) The depressor caudal ventrolateral medulla: its correlation with the pressor dorsomedial and ventrolateral medulla and the depressor paramedian reticular nucleus. J Auton Nerv Syst 70(1–2):103–114PubMedCrossRefGoogle Scholar
  74. 74.
    Ford TW, Bennett JA, Kidd C, McWilliam PN (1990) Neurones in the dorsal motor vagal nucleus of the cat with non-myelinated axons projecting to the heart and lungs. Exp Physiol 75(4):459–473PubMedCrossRefGoogle Scholar
  75. 75.
    Cheng Z, Powley TL (2000) Nucleus ambiguus projections to cardiac ganglia of rat atria: an anterograde tracing study. J Comp Neurol 424(4):588–606PubMedCrossRefGoogle Scholar
  76. 76.
    Massari VJ, Johnson TA, Gatti PJ (1995) Cardiotopic organization of the nucleus ambiguus? An anatomical and physiological analysis of neurons regulating atrioventricular conduction. Brain Res 679(2):227–240PubMedCrossRefGoogle Scholar
  77. 77.
    Sampaio KN, Mauad H, Michael Spyer K, Ford TW (2014) Chronotropic and dromotropic responses to localized glutamate microinjections in the rat nucleus ambiguus. Brain Res 1542:93–103PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Mendelowitz D (1996) Firing properties of identified parasympathetic cardiac neurons in nucleus ambiguus. Am J Physiol 271(6 Pt 2):H2609–H2614PubMedGoogle Scholar
  79. 79.
    Morest DK (1967) Experimental study of the projections of the nucleus of the tractus solitarius and the area postrema in the cat. J Comp Neurol 130(4):277–300PubMedCrossRefGoogle Scholar
  80. 80.
    Stuesse SL, Fish SE (1984) Projections to the cardioinhibitory region of the nucleus ambiguus of rat. J Comp Neurol 229(2):271–278PubMedCrossRefGoogle Scholar
  81. 81.
    Agarwal SK, Calaresu FR (1992) Electrical stimulation of nucleus tractus solitarius excites vagal preganglionic cardiomotor neurons of the nucleus ambiguus in rats. Brain Res 574(1–2):320–324PubMedCrossRefGoogle Scholar
  82. 82.
    Neff RA, Mihalevich M, Mendelowitz D (1998) Stimulation of NTS activates NMDA and non-NMDA receptors in rat cardiac vagal neurons in the nucleus ambiguus. Brain Res 792(2):277–282PubMedCrossRefGoogle Scholar
  83. 83.
    McKitrick DJ, Calaresu FR (1996) Nucleus ambiguus inhibits activity of cardiovascular units in RVLM. Brain Res 742(1–2):203–210PubMedCrossRefGoogle Scholar
  84. 84.
    Ellenberger HH (1999) Nucleus ambiguus and bulbospinal ventral respiratory group neurons in the neonatal rat. Brain Res Bull [Internet] [cited 2019 Aug 25] 50(1):1–13. Available from:
  85. 85.
    Samuels E, Szabadi E (2008) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol [Internet] [cited 2019 Aug 25] 6(3):235–253. Available from:
  86. 86.
    Nakamura K, Morrison SF (2008) A thermosensory pathway that controls body temperature. Nat Neurosci 11(1):62–71PubMedCrossRefGoogle Scholar
  87. 87.
    Frank JG, Jameson HS, Gorini C, Mendelowitz D (2009) Mapping and identification of GABAergic neurons in transgenic mice projecting to cardiac vagal neurons in the nucleus ambiguus using photo-uncaging. J Neurophysiol 101(4):1755–1760PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Dergacheva O, Philbin K, Bateman R, Mendelowitz D (2011) Hypocretin-1 (orexin A) prevents the effects of hypoxia/hypercapnia and enhances the GABAergic pathway from the lateral paragigantocellular nucleus to cardiac vagal neurons in the nucleus ambiguus. Neuroscience [Internet] [cited 2019 Aug 25] 175:18–23. Available from:
  89. 89.
    Chitravanshi VC, Kawabe K, Sapru HN (2015) GABA and glycine receptors in the nucleus ambiguus mediate tachycardia elicited by chemical stimulation of the hypothalamic arcuate nucleus. Am J Physiol Heart Circ Physiol 309(1):H174–H184PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Izzo PN, Deuchars J, Spyer KM (1993) Localization of cardiac vagal preganglionic motoneurones in the rat: immunocytochemical evidence of synaptic inputs containing 5-hydroxytryptamine. J Comp Neurol 327(4):572–583PubMedCrossRefGoogle Scholar
  91. 91.
    Jordan D (2005) Vagal control of the heart: central serotonergic (5-HT) mechanisms. Exp Physiol 90(2):175–181PubMedCrossRefGoogle Scholar
  92. 92.
    Gorini C, Jameson HS, Mendelowitz D (2009) Serotonergic modulation of the trigeminocardiac reflex neurotransmission to cardiac vagal neurons in the nucleus ambiguus. J Neurophysiol 102(3):1443–1450PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Philbin KE, Bateman RJ, Mendelowitz D (2010) Clonidine, an alpha2-receptor agonist, diminishes GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Brain Res 1347:65–70PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Boychuk CR, Bateman RJ, Philbin KE, Mendelowitz D (2011) alpha1-adrenergic receptors facilitate inhibitory neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Neuroscience 193:154–161PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Bateman RJ, Boychuk CR, Philbin KE, Mendelowitz D (2012) Beta adrenergic receptor modulation of neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Neuroscience 210:58–66PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Dyavanapalli J, Byrne P, Mendelowitz D (2013) Activation of D2-like dopamine receptors inhibits GABA and glycinergic neurotransmission to pre-motor cardiac vagal neurons in the nucleus ambiguus. Neuroscience 247:213–226PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Sharp DB, Wang X, Mendelowitz D (2014) Dexmedetomidine decreases inhibitory but not excitatory neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Brain Res 1574:1–5PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Mendelowitz D (2000) Superior laryngeal neurons directly excite cardiac vagal neurons within the nucleus ambiguus. Brain Res Bull 51(2):135–138PubMedCrossRefGoogle Scholar
  99. 99.
    Irnaten M, Wang J, Mendelowitz D (2001) Firing properties of identified superior laryngeal neurons in the nucleus ambiguus in the rat. Neurosci Lett 303(1):1–4PubMedCrossRefGoogle Scholar
  100. 100.
    Chitravanshi VC, Bhatt S, Sapru HN (2009) Microinjections of alpha-melanocyte stimulating hormone into the nucleus ambiguus of the rat elicit vagally mediated bradycardia. Am J Physiol Regul Integr Comp Physiol 296(5):R1402–R1411PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Passamani LM, Pedrosa DF, Mauad H, Schenberg LC, Paton JFR, Sampaio KN (2011) Involvement of the purinergic system in central cardiovascular modulation at the level of the nucleus ambiguus of anaesthetized rats. Exp Physiol 96(3):262–274PubMedCrossRefGoogle Scholar
  102. 102.
    Brailoiu GC, Deliu E, Rabinowitz JE, Tilley DG, Koch WJ, Brailoiu E (2014) Urotensin II promotes vagal-mediated bradycardia by activating cardiac-projecting parasympathetic neurons of nucleus ambiguus. J Neurochem 129(4):628–636PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Brailoiu E, McGuire M, Shuler SA, Deliu E, Barr JL, Abood ME et al (2017) Modulation of cardiac vagal tone by bradykinin acting on nucleus ambiguus. Neuroscience 365:23–32PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Griffioen KJS, Venkatesan P, Huang Z-G, Wang X, Bouairi E, Evans C et al (2004) Fentanyl inhibits GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Brain Res 1007(1–2):109–115PubMedCrossRefGoogle Scholar
  105. 105.
    Wang X (2009) Propofol and isoflurane enhancement of tonic gamma-aminobutyric acid type a current in cardiac vagal neurons in the nucleus ambiguus. Anesth Analg 108(1):142–148PubMedCrossRefGoogle Scholar
  106. 106.
    Venkatesan P, Baxi S, Evans C, Neff R, Wang X, Mendelowitz D (2003) Glycinergic inputs to cardiac vagal neurons in the nucleus ambiguus are inhibited by nociceptin and mu-selective opioids. J Neurophysiol 90(3):1581–1588PubMedCrossRefGoogle Scholar
  107. 107.
    Wang X, Huang Z-G, Dergacheva O, Bouairi E, Gorini C, Stephens C et al (2005) Ketamine inhibits inspiratory-evoked gamma-aminobutyric acid and glycine neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Anesthesiology 103(2):353–359PubMedCrossRefGoogle Scholar
  108. 108.
    Torvik A (1956) Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures; an experimental study in the rat. J Comp Neurol 106(1):51–141PubMedCrossRefGoogle Scholar
  109. 109.
    Potts JT (2002) Neural circuits controlling cardiorespiratory responses: baroreceptor and somatic afferents in the nucleus tractus solitarius. Clin Exp Pharmacol Physiol 29(1–2):103–111PubMedCrossRefGoogle Scholar
  110. 110.
    Nyberg G, Blomqvist A (1984) The central projection of muscle afferent fibres to the lower medulla and upper spinal cord: an anatomical study in the cat with the transganglionic transport method. J Comp Neurol 230(1):99–109PubMedCrossRefGoogle Scholar
  111. 111.
    Menetrey D, Basbaum AI (1987) Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflex activation. J Comp Neurol 255(3):439–450PubMedCrossRefGoogle Scholar
  112. 112.
    Hines T, Toney GM, Mifflin SW (1994) Responses of neurons in the nucleus tractus solitarius to stimulation of heart and lung receptors in the rat. Circ Res 74(6):1188–1196PubMedCrossRefGoogle Scholar
  113. 113.
    Potts JT, Hand GA, Li J, Mitchell JH (1998) Central interaction between carotid baroreceptors and skeletal muscle receptors inhibits sympathoexcitation. J Appl Physiol 84(4):1158–1165PubMedCrossRefGoogle Scholar
  114. 114.
    Loewy AD, Burton H (1978) Nuclei of the solitary tract: efferent projections to the lower brain stem and spinal cord of the cat. J Comp Neurol 181(2):421–449PubMedCrossRefGoogle Scholar
  115. 115.
    Beckstead RM, Morse JR, Norgren R (1980) The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J Comp Neurol 190(2):259–282PubMedCrossRefGoogle Scholar
  116. 116.
    Janes RD, Brandys JC, Hopkins DA, Johnstone DE, Murphy DA, Armour JA (1986) Anatomy of human extrinsic cardiac nerves and ganglia. Am J Cardiol 57(4):299–309PubMedCrossRefGoogle Scholar
  117. 117.
    Kawashima T (2005) The autonomic nervous system of the human heart with special reference to its origin, course, and peripheral distribution. Anat Embryol (Berl) 209(6):425–438CrossRefGoogle Scholar
  118. 118.
    Agostoni E, Chinnok JE, De daly MB, Murray JG (1957) Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J Physiol 135(1):182–205PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Uchida Y, Murao S (1974) Excitation of afferent cardiac sympathetic nerve fibers during coronary occlusion. Am J Physiol 226(5):1094–1099PubMedCrossRefGoogle Scholar
  120. 120.
    Thompson GW, Horackova M, Armour JA (2000) Chemotransduction properties of nodose ganglion cardiac afferent neurons in guinea pigs. Am J Physiol Regul Integr Comp Physiol 279(2):R433–R439PubMedCrossRefGoogle Scholar
  121. 121.
    Huang MH, Horackova M, Negoescu RM, Wolf S, Armour JA (1996) Polysensory response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia. Cardiovasc Res 32(3):503–515PubMedCrossRefGoogle Scholar
  122. 122.
    Whitteridge D (1948) Afferent nerve fibres from the heart and lungs in the cervical vagus. J Physiol 107(4):496–512PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Neil E, Zotterman Y (1950) Cardiac vagal afferent fibers in the cat and the frog. Acta Physiol Scand 20(2–3):160–165PubMedCrossRefGoogle Scholar
  124. 124.
    Dickinson CJ (1950) Afferent nerves from the heart region. J Physiol 111(3–4):399–407PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Paintal AS (1953) Another atrial receptor. J Physiol 119(1):10P–11PPubMedGoogle Scholar
  126. 126.
    Coleridge JC, Hemingway A, Holmes RL, Linden RJ (1956) Atrial receptors in the dog. J Physiol 132(3):68–9PPubMedGoogle Scholar
  127. 127.
    Coleridge JC, Hemingway A, Holmes RL, Linden RJ (1957) The location of atrial receptors in the dog: a physiological and histological study. J Physiol 136(1):174–197PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Coleridge HM, Coleridge JC (1980) Cardiovascular afferents involved in regulation of peripheral vessels. Annu Rev Physiol 42:413–427PubMedCrossRefGoogle Scholar
  129. 129.
    Armour J (1973) Physiological behavior of thoracic cardiovascular receptors. Am J Physiol Content [Internet] 2251(1):177–185. Available from:
  130. 130.
    Coleridge HM, Coleridge JCG, Kidd C (1964) Cardiac receptors in the dog, with particular reference to two types of afferent ending in the ventricular wall. J Physiol [Internet] 174(3):323–339. Available from:
  131. 131.
    Paintal AS (1973) Vagal sensory receptors and their reflex effects. Physiol Rev [Internet] 53(1):159–227. Available from:
  132. 132.
    Malliani A, Parks M, Tuckett RP, Brown AM (1973) Reflex increases in heart rate elicited by stimulation of afferent cardiac sympathetic nerve fibers in the cat. Circ Res 32(1):9–14PubMedGoogle Scholar
  133. 133.
    Casati R, Lombardi F, Malliani A (1979) Afferent sympathetic unmyelinated fibres with left ventricular endings in cats. J Physiol 292:135–148PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Barber MJ, Mueller TM, Davies BG, Zipes DP (1984) Phenol topically applied to canine left ventricular epicardium interrupts sympathetic but not vagal afferents. Circ Res 55(4):532–544PubMedCrossRefGoogle Scholar
  135. 135.
    Armour JA (1986) Neuronal activity recorded extracellularly in chronically decentralized in situ canine middle cervical ganglia. Can J Physiol Pharmacol 64(7):1038–1046PubMedCrossRefGoogle Scholar
  136. 136.
    Bosnjak ZJ, Kampine JP (1989) Cardiac sympathetic afferent cell bodies are located in the peripheral nervous system of the cat. Circ Res 64(3):554–562PubMedCrossRefGoogle Scholar
  137. 137.
    Wang H-J, Rozanski GJ, Zucker IH (2017) Cardiac sympathetic afferent reflex control of cardiac function in normal and chronic heart failure states. J Physiol 595(8):2519–2534PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Cheng Z, Powley TL, Schwaber JS, Doyle FJ III (1997) Vagal afferent innervation of the atria of the rat heart reconstructed with confocal microscopy. J Comp Neurol 381(1):1–17PubMedCrossRefGoogle Scholar
  139. 139.
    Ardell JL, Butler CK, Smith FM, Hopkins DA, Armour JA (1991) Activity of in vivo atrial and ventricular neurons in chronically decentralized canine hearts. Am J Physiol [Internet] 260(3 Pt 2):H713–H721. Available from:
  140. 140.
    Armour JA (1983) Synaptic transmission in the chronically decentralized middle cervical and stellate ganglia of the dog. Can J Physiol Pharmacol 61(10):1149–1155PubMedCrossRefGoogle Scholar
  141. 141.
    Hopkins DA, Armour JA (1989) Ganglionic distribution of afferent neurons innervating the canine heart and cardiopulmonary nerves. J Auton Nerv Syst 26(3):213–222PubMedCrossRefGoogle Scholar
  142. 142.
    Armour JA, Huang MH, Pelleg A, Sylven C (1994) Responsiveness of in situ canine nodose ganglion afferent neurones to epicardial mechanical or chemical stimuli. Cardiovasc Res 28(8):1218–1225PubMedCrossRefGoogle Scholar
  143. 143.
    Nozdrachev AD, Fateev MM, Jiménez B, Morales MA (2003) Circuits and projections of cat stellate ganglion. Arch Med Res [Internet] 34(2):106–115. Available from:
  144. 144.
    Quigg M (1991) Distribution of vagal afferent fibers of the guinea pig heart labeled by anterograde transport of conjugated horseradish peroxidase. J Auton Nerv Syst 36(1):13–24PubMedCrossRefGoogle Scholar
  145. 145.
    Quigg M, Elfvin LG, Aldskogius H (1988) Distribution of cardiac sympathetic afferent fibers in the guinea pig heart labeled by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Auton Nerv Syst 25(2–3):107–118PubMedCrossRefGoogle Scholar
  146. 146.
    Vance WH, Bowker RC (1983) Spinal origins of cardiac afferents from the region of the left anterior descending artery. Brain Res [Internet] 258(1):96–100. Available from:
  147. 147.
    Blair RW, Weber RN, Foreman RD (1981) Characteristics of primate spinothalamic tract neurons receiving viscerosomatic convergent inputs in T3-T5 segments. J Neurophysiol 46(4):797–811PubMedCrossRefGoogle Scholar
  148. 148.
    Kuo DC, Nadelhaft I, Hisamitsu T, de Groat WC (1983) Segmental distribution and central projections of renal afferent fibers in the cat studied by transganglionic transport of horseradish peroxidase. J Comp Neurol 216(2):162–174PubMedCrossRefGoogle Scholar
  149. 149.
    Petras JM, Cummings JF (1972) Autonomic neurons in the spinal cord of the Rhesus monkey: a correlation of the findings of cytoarchitectonics and sympathectomy with fiber degeneration following dorsal rhizotomy. J Comp Neurol 146(2):189–218PubMedCrossRefGoogle Scholar
  150. 150.
    Coote JH, Chauhan RA (2016) The sympathetic innervation of the heart: important new insights. Auton Neurosci 199:17–23PubMedCrossRefGoogle Scholar
  151. 151.
    Randall WC, McNally H (1960) Augmentor action of the sympathetic cardiac nerves in man. J Appl Physiol [Internet] 15(4):629–631. Available from:
  152. 152.
    Coote JH (1988) The organisation of cardiovascular neurons in the spinal cord. Rev Physiol Biochem Pharmacol [Internet] 110:147–285. Available from:
  153. 153.
    Pyner S, Coote JH (1994) Evidence that sympathetic preganglionic neurones are arranged in target-specific columns in the thoracic spinal cord of the rat. J Comp Neurol 342(1):15–22PubMedCrossRefGoogle Scholar
  154. 154.
    Pardini BJ, Lund DD, Schmid PG (1989) Organization of the sympathetic postganglionic innervation of the rat heart. J Auton Nerv Syst 28(3):193–201PubMedCrossRefGoogle Scholar
  155. 155.
    Irie T, Yamakawa K, Hamon D, Nakamura K, Shivkumar K, Vaseghi M (2017) Cardiac sympathetic innervation via middle cervical and stellate ganglia and antiarrhythmic mechanism of bilateral stellectomy. Am J Physiol Heart Circ Physiol 312(3):H392–H405PubMedCrossRefGoogle Scholar
  156. 156.
    Hopkins DA, Armour JA (1984) Localization of sympathetic postganglionic and parasympathetic preganglionic neurons which innervate different regions of the dog heart. J Comp Neurol 229(2):186–198PubMedCrossRefGoogle Scholar
  157. 157.
    Mizeres NJ (1955) The anatomy of the autonomic nervous system in the dog. Am J Anat [Internet] 96(2):285–318. Available from:
  158. 158.
    Woollard HH (1926) The Innervation of the Heart. J Anat 60(Pt 4):345–373PubMedPubMedCentralGoogle Scholar
  159. 159.
    Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA (1997) Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec 247(2):289–298PubMedCrossRefGoogle Scholar
  160. 160.
    Mitchell GAG (1953) The innervation of the heart. Br Heart J [Internet] 15(2):159–171. Available from:
  161. 161.
    Ellison JP, Hibbs RG (1976) An ultrastructural study of mammalian cardiac ganglia. J Mol Cell Cardiol [Internet] 8(2):89–101. Available from:
  162. 162.
    Smith RB (1971) The occurrence and location of intrinsic cardiac ganglia and nerve plexuses in the human neonate. Anat Rec 169(1):33–40PubMedCrossRefGoogle Scholar
  163. 163.
    Irisawa H (1978) Comparative physiology of the cardiac pacemaker mechanism. Physiol Rev 58(2):461–498PubMedCrossRefGoogle Scholar
  164. 164.
    Moravec M, Courtalon A, Moravec J (1986) Intrinsic neurosecretory neurons of the rat heart atrioventricular junction: possibility of local neuromuscular feed back loops. J Mol Cell Cardiol 18(4):357–367PubMedCrossRefGoogle Scholar
  165. 165.
    Moravec M, Moravec J (1984) Intrinsic innervation of the atrioventricular junction of the rat heart. Am J Anat [Internet] 171(3):307–319. Available from:
  166. 166.
    Gagliardi M, Randall WC, Bieger D, Wurster RD, Hopkins DA, Armour JA (1988) Activity of in vivo canine cardiac plexus neurons. Am J Physiol 255(4 Pt 2):H789–H800PubMedGoogle Scholar
  167. 167.
    Armour JA, Hopkins DA (1990) Activity of in vivo canine ventricular neurons. Am J Physiol Circ Physiol [Internet] 258(2):H326–H336. Available from:
  168. 168.
    Yuan BX, Ardell JL, Hopkins DA, Losier AM, Armour JA (1994) Gross and microscopic anatomy of the canine intrinsic cardiac nervous system. Anat Rec 239(1):75–87PubMedCrossRefGoogle Scholar
  169. 169.
    Arora RC, Waldmann M, Hopkins DA, Armour JA (2003) Porcine intrinsic cardiac ganglia. Anat Rec A Discov Mol Cell Evol Biol 271(1):249–258PubMedCrossRefGoogle Scholar
  170. 170.
    Saburkina I, Rysevaite K, Pauziene N, Mischke K, Schauerte P, Jalife J et al (2010) Epicardial neural ganglionated plexus of ovine heart: anatomic basis for experimental cardiac electrophysiology and nerve protective cardiac surgery. Hear Rhythm 7(7):942–950CrossRefGoogle Scholar
  171. 171.
    de Souza RR, Gama EF, de Carvalho CA, Liberti EA (1996) Quantitative study and architecture of nerves and ganglia of the rat heart. Acta Anat (Basel) 156(1):53–60CrossRefGoogle Scholar
  172. 172.
    Rysevaite K, Saburkina I, Pauziene N, Noujaim SF, Jalife J, Pauza DH (2011) Morphologic pattern of the intrinsic ganglionated nerve plexus in mouse heart. Hear Rhythm 8(3):448–454CrossRefGoogle Scholar
  173. 173.
    Pauziene N, Alaburda P, Rysevaite-Kyguoliene K, Pauza AG, Inokaitis H, Masaityte A et al (2016) Innervation of the rabbit cardiac ventricles. J Anat 228(1):26–46PubMedCrossRefGoogle Scholar
  174. 174.
    Leger J, Croll RP, Smith FM (1999) Regional distribution and extrinsic innervation of intrinsic cardiac neurons in the guinea pig. J Comp Neurol 407(3):303–317PubMedCrossRefGoogle Scholar
  175. 175.
    Armour JA (2008) Potential clinical relevance of the “little brain” on the mammalian heart. Exp Physiol 93(2):165–176PubMedCrossRefGoogle Scholar
  176. 176.
    Pauza DH, Skripka V, Pauziene N, Stropus R (2000) Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart. Anat Rec 259(4):353–382PubMedCrossRefGoogle Scholar
  177. 177.
    Worobiew W (1925) Die Nerven des menschlichen und tierischen Herzens. Dtsch Med Wochenschr 36:1509–1535Google Scholar
  178. 178.
    Worobiew W (1928) Plica nervina atrii sinistri. Z Anat Entwicklungs 26:509–516CrossRefGoogle Scholar
  179. 179.
    Roy CS, Adami JG (1892) Contributions to the physiology and pathology of the mammalian heart. BMJ [Internet] 1(1626):428–430. Available from:
  180. 180.
    Bayliss WM, Starling EH (1892) On some points in the innervation of the mammalian heart. J Physiol [Internet] 13(5):407–418. Available from:
  181. 181.
    Kollai M, Koizumi K (1979) Reciprocal and non-reciprocal action of the vagal and sympathetic nerves innervating the heart. J Auton Nerv Syst 1(1):33–52PubMedCrossRefGoogle Scholar
  182. 182.
    Samaan A (1935) The antagonistic cardiac nerves and heart rate. J Physiol [Internet] 83(3):332–340. Available from:
  183. 183.
    Anzola J, Rushmer RF (1956) Cardiac responses to sympathetic stimulation. Circ Res 4(3):302–307PubMedCrossRefGoogle Scholar
  184. 184.
    Hoffman BF, Siebens AA, Brooks CM (1952) Effect of vagal stimulation on cardiac excitability. Am J Physiol 169(2):377–383PubMedCrossRefGoogle Scholar
  185. 185.
    Reeves TJ, Hefner LL (1961) The effect of vagal stimulation on ventricular contractility. Trans Assoc Am Phys 74:260–270PubMedGoogle Scholar
  186. 186.
    Nonidez JF (1939) Studies on the innervation of the heart. I. Distribution of the cardiac nerves, with special reference to the identification of the sympathetic and parasympathetic postganglionics. Am J Anat [Internet] 65(3):361–413. Available from:
  187. 187.
    Harman M, Reeves T (1968) Effects of efferent vagal stimulation on atrial and ventricular function. Am J Physiol Content [Internet] 215(5):1210–1217. Available from:
  188. 188.
    Dale AS (1930) The relation between amplitude of contraction and rate of rhythm in the mammalian ventricle. (Including interpretation of the apparent indirect action of the vagus on amplitude of ventricular contraction). J Physiol 70(4):455–473PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Yang T, Levy MN (1992) Sequence of excitation as a factor in sympathetic-parasympathetic interactions in the heart. Circ Res 71(4):898–905PubMedCrossRefGoogle Scholar
  190. 190.
    Furukawa Y, Hoyano Y, Chiba S (1996) Parasympathetic inhibition of sympathetic effects on sinus rate in anesthetized dogs. Am J Physiol [Internet] 271(1 Pt 2):H44–H50. Available from:
  191. 191.
    Kuroda M, Kuno Y (1915) Note on vagus stimulation of the adrenalised heart. J Physiol 50(2):154–156PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Cohn AE (1912) On the differences in the effects of stimulation of the two vagus nerves on rate and conduction of the dog’s heart. J Exp Med 16(6):732–757PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Yadav K, Singh A, Jaryal AK, Coshic P, Chatterjee K, Deepak KK (2017) Modulation of cardiac autonomic tone in non-hypotensive hypovolemia during blood donation. J Clin Monit Comput [Internet] [cited 2018 Mar 25] 31(4):739–746. Available from:
  194. 194.
    Paton JFR, Boscan P, Pickering AE, Nalivaiko E (2005) The yin and yang of cardiac autonomic control: vago-sympathetic interactions revisited. Brain Res Brain Res Rev 49(3):555–565PubMedCrossRefGoogle Scholar
  195. 195.
    Nalivaiko E, De Pasquale CG, Blessing WW (2003) Electrocardiographic changes associated with the nasopharyngeal reflex in conscious rabbits: vago-sympathetic co-activation. Auton Neurosci 105(2):101–104PubMedCrossRefGoogle Scholar
  196. 196.
    Boscan P, Paton JF (2001) Role of the solitary tract nucleus in mediating nociceptive evoked cardiorespiratory responses. Auton Neurosci 86(3):170–182PubMedCrossRefGoogle Scholar
  197. 197.
    Abdeen OA, Taylor BK, Youngblood KL, Printz MP (1995) Peripheral beta adrenergic blockade modifies airpuff startle-induced heart rate responses. J Pharmacol Exp Ther 272(1):282–289PubMedGoogle Scholar
  198. 198.
    Nijsen MJ, Croiset G, Diamant M, Stam R, Delsing D, de Wied D et al (1998) Conditioned fear-induced tachycardia in the rat: vagal involvement. Eur J Pharmacol 350(2–3):211–222PubMedCrossRefGoogle Scholar
  199. 199.
    Kozlowska K, Walker P, McLean L, Carrive P (2015) Fear and the defense cascade: clinical implications and management. Harv Rev Psychiatry 23(4):263–287PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Feldberg W, Guertzenstein PG (1976) Vasodepressor effects obtained by drugs acting on the ventral surface of the brain stem. J Physiol 258(2):337–355PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Jordan D, Khalid ME, Schneiderman N, Spyer KM (1982) The location and properties of preganglionic vagal cardiomotor neurones in the rabbit. Pflugers Arch 395(3):244–250PubMedCrossRefGoogle Scholar
  202. 202.
    Jordan D, Spyer KM (1986) Brainstem integration of cardiovascular and pulmonary afferent activity. Prog Brain Res [Internet] 67:295–314. Available from:
  203. 203.
    Tsai C-Y, Poon Y-Y, Chan JYH, Chan SHH (2019) Baroreflex functionality in the eye of diffusion tensor imaging. J Physiol 597(1):41–55PubMedCrossRefGoogle Scholar
  204. 204.
    Yuan BX, Ardell JL, Hopkins DA, Armour JA (1993) Differential cardiac responses induced by nicotine sensitive canine atrial and ventricular neurones. Cardiovasc Res 27(5):760–769PubMedCrossRefGoogle Scholar
  205. 205.
    Beaumont E, Salavatian S, Southerland EM, Vinet A, Jacquemet V, Armour JA et al (2013) Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function. J Physiol 591(18):4515–4533PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Ashok Kumar Jaryal
    • 1
    Email author
  • Akanksha Singh
    • 1
  • Kishore Kumar Deepak
    • 1
  1. 1.Department of PhysiologyAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations