Skip to main content

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

This work represents the prediction of protein structures through computational approaches. The advanced tools for computational method are majorly classified into comparative modelling, fold recognition and ab initio techniques. These approaches help to predict the protein side chain, protein structural sequential alignment, protein folding as well as three-dimensional protein structure. These tools determine the molecular structure of proteins from electron microscopy, spectroscopy, nuclear magnetic resonance (NMR), X-ray diffraction measurements, etc. These mentioned computational approaches are also utilized for designing 3D structure-based drug which is used in health care. In this chapter, we are presenting the different computational methods for prediction of the protein structure and their use in drug discovery. Optimization of each method is discussed here including their major significances along with the challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Venkatesan A, Gopal J, Candavelou M, Gollapalli S, Karthikeyan K (2013) Computational approach for protein structure prediction. Healthc Inform Res 19(2):137–147. https://doi.org/10.4258/hir.2013.19.2.137

    Article  Google Scholar 

  2. Brocchieri L, Karlin S (2005) Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res 33(10):3390–3400. https://doi.org/10.1093/nar/gki615

    Article  Google Scholar 

  3. Sanger F, Tuppy H (1951) The amino-acid sequence in the phenylalanyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. Biochem J 49(4):463–481. https://doi.org/10.1042/bj0490463

    Article  Google Scholar 

  4. Perticaroli S, Nickels JD, Ehlers G, O’Neill H, Zhang Q, Sokolov AP (2013) Secondary structure and rigidity in model proteins. Soft Matter 9(40):9548–9556. https://doi.org/10.1039/C3SM50807B

    Article  Google Scholar 

  5. Nickels JD, Perticaroli S, O’Neill H, Zhang Q, Ehlers G, Sokolov AP (2013) Coherent neutron scattering and collective dynamics in the protein. GFP Biophys J 105(9):2182–2187. https://doi.org/10.1016/j.bpj.2013.09.029

    Article  Google Scholar 

  6. Perticaroli S, Nickels JD, Ehlers G, Sokolov AP (2014) Rigidity, secondary structure, and the universality of the boson peak in proteins. Biophys J 106(12):2667–2674. https://doi.org/10.1016/j.bpj.2014.05.009

    Article  Google Scholar 

  7. Pirovano W, Heringa J (2010) Protein secondary structure prediction. Methods Mol Biol 609:327–348. https://doi.org/10.1007/978-1-60327-241-4_19

    Article  Google Scholar 

  8. Calligari PA, Kneller GR (2012) ScrewFit: combining localization and description of protein secondary structure. Acta Crystallogr Sect D 68(Pt 12):1690–1693. https://doi.org/10.1107/s0907444912039029

    Article  Google Scholar 

  9. Seeliger D, De Groot BL (2010) Conformational transitions upon ligand binding: Holo-structure prediction from apo conformations. PLoS Comput Biol 6(1):e1000634. https://doi.org/10.1371/journal.pcbi.1000634

    Article  Google Scholar 

  10. Xiao X, Wang P, Chou KC (2009) Predicting protein quaternary structural attribute by hybridizing functional domain composition and pseudo amino acid composition. J Appl Crystallogr 42:169–173

    Article  Google Scholar 

  11. Bu Z, Callaway DJ (2011) Proteins MOVE! Protein dynamics and long-range allostery in cell signaling. Protein Structure and Diseases. Adv Protein Chem Struct Biol 83:163–221. https://doi.org/10.1016/B978-0-12-381262-9.00005-7

    Article  Google Scholar 

  12. Mittag Tanja, Marsh Joseph, Grishaev Alexander, Orlicky Stephen, Lin Hong, Sicheri Frank, Tyers Mike, Forman-Kay Julie D (2010) Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase. Structure 18(4):494–506. https://doi.org/10.1016/j.str.2010.01.020

    Article  Google Scholar 

  13. Rokde CN, Kshirsagar M (2013) Bioinformatics: protein structure prediction. In: 2013 fourth international conference on computing, communications and networking technologies (ICCCNT), Tiruchengode, pp. 1–5. https://doi.org/10.1109/icccnt.2013.6726753

  14. Zhai Y, Yang B, Wang L, An B (2009) New trend of protein secondary structure prediction. In: 2009 international symposium on intelligent ubiquitous computing and education, Chengdu, pp 121–124. https://doi.org/10.1109/iuce.2009.9

  15. Rost B, Sander C (1999) Third generation prediction of secondary structure. In: Protein structure prediction: methods and protocols. Humana Press, New Jersey, USA

    Google Scholar 

  16. Kaczanowski S, Zielenkiewicz P (2010) Why similar protein sequences encode similar three-dimensional structures? Theoret Chem Acc 125(3–6):643–650. https://doi.org/10.1007/s00214-009-0656-3

    Article  Google Scholar 

  17. https://en.wikipedia.org/wiki/List_of_protein_structure_prediction_software#Ab_initio_structure_prediction. Accessed on 23rd June 2019

  18. Peng Jian, Xu Jinbo (2011) RaptorX: exploiting structure information for protein alignment by statistical inference. Proteins 79(Suppl 10):161–171. https://doi.org/10.1002/prot.23175

    Article  Google Scholar 

  19. Peng Jian, Xu Jinbo (2010) Low-homology protein threading. Bioinformatics 26(12):i294–i300. https://doi.org/10.1093/bioinformatics/btq192

    Article  Google Scholar 

  20. Ma Jianzhu, Wang Sheng, Xu Jinbo (2012) A conditional neural fields model for protein threading. Bioinformatics 28(12):i59–i66. https://doi.org/10.1093/bioinformatics/bts213

    Article  Google Scholar 

  21. Wu S, Zhang Y (2007) LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res 35(10):3375–3382

    Article  Google Scholar 

  22. Skolnick J, Kihara D, Zhang Y (2004) Development and large scale benchmark testing of the PROSPECTOR 3.0 threading algorithm. Protein 56:502–518

    Article  Google Scholar 

  23. Bryant SH, Lawrence CE (1993) An empirical energy function for threading protein sequence through the folding motif. Proteins 16(1):92–112

    Article  Google Scholar 

  24. Lee, Wu S, Zhang Y (2009) Ab initio protein structure prediction. In: Rigden DJ (ed) From protein structure to function with bioinformatics, pp 3–25. Springer, Netherlands

    Google Scholar 

  25. Xu D, Zhang Y (2012) Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80(7):1715–1735

    Google Scholar 

  26. Xu D, Zhang Y (2013) Toward optimal fragment generations for ab initio protein structure assembly. Proteins 81(2):229–239

    Article  Google Scholar 

  27. Thomas PD, Dill KA (1996) Statistical potentials extracted from protein structures: how accurate are they? J Mol Biol 257(2):457–469

    Article  Google Scholar 

  28. Taylor WR, Bartlett GJ, Chelliah V et al (2008) Prediction of protein structure from ideal forms. Proteins 70(4):1610–1619

    Article  Google Scholar 

  29. Pedersen JT, Moult J (1997) Ab initio protein folding simulations with genetic algorithms: simulations on the complete sequence of small proteins. Proteins 29:179–184

    Article  Google Scholar 

  30. Melo F, Sanchez R, Sali A (2002) Statistical potentials for fold assessment. Protein Sci 11(2):430–448

    Article  Google Scholar 

  31. Oldziej S, Czaplewski C, Liwo A et al (2005) Physics-based protein-structure prediction using a hierarchical protocol based on the UNRES force field: assessment in two blind tests. Proc Natl Acad Sci USA 102(21):7547–7552

    Article  Google Scholar 

  32. Lindorff-Larsen K, Maragakis P, Piana S et al (2012) Systematic validation of protein force fields against experimental data. PLoS ONE 7(2):e32131

    Article  Google Scholar 

  33. Freddolino PL, Harrison CB, Liu Y et al (2010) Challenges in protein folding simulations: timescale, representation, and analysis. Nat Phys 6(10):751–758

    Article  Google Scholar 

  34. Zhang Y, Kihara D, Skolnick J (2002) Local energy landscape flattening: parallel hyperbolic monte carlo sampling of protein folding. Proteins-Struct Funct Genet 48(2):192–201

    Article  Google Scholar 

  35. Klepeis JL, Wei Y, Hecht MH et al (2005) Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study. Proteins 58(3):560–570

    Article  Google Scholar 

  36. Kryshtafovych A, Barbato A, Monastyrskyy B et al (2015) Methods of model accuracy estimation can help selecting the best models from decoy sets: assessment of model accuracy estimations in CASP11. Proteins 84:349–369

    Article  Google Scholar 

  37. Jayachandran G et al (2006) Using massively parallel simulation and Markovian models to study protein folding: Examining the dynamics of the villin headpiece. Published online

    Google Scholar 

  38. Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A (2016-06-22) Coarse-grained protein models and their applications. Chem Rev 116(14):7898–936. https://doi.org/10.1021/acs.chemrev.6b00163

    Article  Google Scholar 

  39. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725–738

    Article  Google Scholar 

  40. Fujitsuka Y, Chikenji G, Takada S (2006) SimFold energy function for de novo protein structure prediction: consensus with Rosetta. Proteins 62(2):381–398

    Article  Google Scholar 

  41. Moult J et al (2007) Critical assessment of methods of protein structure prediction—Round VII. Proteins 69(Suppl 8):3–9. https://doi.org/10.1002/prot.21767

    Article  Google Scholar 

  42. Zhang Y, Skolnick J (2005) The protein structure prediction problem could be solved using the current PDB library. Proc Natl Acad Sci USA 102(4):1029–1034. https://doi.org/10.1073/pnas.0407152101

    Article  Google Scholar 

  43. Qian B et al (2007) High-resolution structure prediction and the crystallographic phase problem. Nature 450(7167):259–264. https://doi.org/10.1038/nature06249

    Article  Google Scholar 

  44. Tress M et al (2009) Target domain definition and classification in CASP8. Proteins 77(Suppl 9):10–17. https://doi.org/10.1002/prot.22497

    Article  Google Scholar 

  45. Kryshtafovych A, Monastyrskyy B, Fidelis K (2014) CASP prediction center infrastructure and evaluation measures in CASP10 and CASP ROLL. Proteins Struct Funct Bioinform 82(Suppl 2):7–13. https://doi.org/10.1002/prot.24399

    Article  Google Scholar 

  46. Kryshtafovych A et al (2007) Progress from CASP6 to CASP7. Proteins: Struct Funct Bioinf 69(Suppl 8):194–207. https://doi.org/10.1002/prot.21769

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majumder, P. (2020). Computational Methods Used in Prediction of Protein Structure. In: Srinivasa, K., Siddesh, G., Manisekhar, S. (eds) Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques, Tools, and Applications. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2445-5_8

Download citation

Publish with us

Policies and ethics