Skip to main content

Kinetics

  • Chapter
  • First Online:
Basic Concepts of Iron and Steel Making

Abstract

Productivity of a process is depending on the kinetic calculation of the reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.O. Edstrom, J. Iron Steel Inst. 175, 289 (1953)

    CAS  Google Scholar 

  2. W.M. Mckewan, Chipman Conference on Steelmaking, ed. by J.F. Elliott (MIT Press, Cambridge, MA, 1965), p. 141

    Google Scholar 

  3. L.V. Bogdandy, H.J. Engell, The Reduction of Iron Ores (Springer, Berlin, 1971)

    Google Scholar 

  4. W. Jander, Z. Anorg, Allg Chem. 163, 1 (1927)

    Article  CAS  Google Scholar 

  5. S.K. Dutta, A. Ghosh, Metall. Mat. Trans. B 25B, 15 (1994)

    Article  CAS  Google Scholar 

  6. A. Ghosh, A. Chatterjee, Ironmaking and Steelmaking (Theory and Practice) 1st edn. (PHI Learning Pvt. Ltd., New Delhi, 2008)

    Google Scholar 

  7. A.E. Reif, J. Phys. Chem. 56, 773 (1952)

    Google Scholar 

  8. S. Ergun, J. Phys. Chem. 60, 480 (1956)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujay Kumar Dutta .

Appendices

Probable Questions

  1. 1.

    What are the assumptions made by Mckewan to develop a mathematical model? Derive Mckewan equation.

  2. 2.

    Derive the equation for solid–solid reaction.

  3. 3.

    What do you mean by Reif’s mechanism for gasification reaction? Derive Ergun’s rate equation for gasification reaction.

  4. 4.

    Discuss the factors that affect kinetics of solid-state iron oxide reduction, in the stack of a BF.

Examples

Example 11.1

The initial weight of pure iron oxide (Fe2O3) powder is 295.6 mg. Iron oxide powder is reduced by hydrogen at 800 °C. In reduction experiment with time weight loss are noted as follows:

Time (s)

36

60

120

180

240

300

420

600

Wt. loss (mg)

6.69

14.05

31.94

48.14

55.33

59.34

64.94

70.24

Calculate (i) fraction of reduction (f) w.r.t time (t), (ii) draw f versus t graph, (iii) calculate rate of reduction \( \left( {\frac{{{\text{d}}f}}{{{\text{d}}t}}} \right) \) at initial stage of reduction from the graph.

Solution

$$ \begin{aligned} {\text{The fraction of reduction}}\,\left( f \right) & = \left[ {\frac{{\left( {\text{O}_{2} \,{\text{removed from the sample}}} \right) }}{{\left( {{\text{Total removable}}\,{\text{O}}_{2} \,{\text{present in the sample}}} \right)}}} \right] \\ & = \left[ {\frac{{\left( {\text{weight loss}} \right) }}{{\left( {{\text{Total removable}}\,{\text{O}}_{2} \,{\text{present in the sample}}} \right)}}} \right] \\ & = \left[ {\frac{{\left\{ {\left( {W_{1} - W_{2} } \right)} \right\} }}{{W_{\text{O}} }}} \right] \\ \end{aligned} $$
$$ \begin{aligned} \text{where total removable oxygen present in iron oxide} & = W_{\text{O}} = W_{1} \times f_{\text{ore}} \times \rho_{\text{ore}} \times f_{\text{O}} \\ & = 295.6 \times 1 \times 1 \times 0.3 = 88.68\,\text{mg} \\ \end{aligned} $$

(Since iron oxide is pure, so fore and ρore are one.)

Time (s)

36

60

120

180

240

300

420

600

Wt. loss (mg)

6.69

14.05

31.94

48.14

55.33

59.34

64.94

70.24

f

0.075

0.158

0.36

0.543

0.624

0.669

0.732

0.792

Plot f versus t, from initial slop we get rate of reduction:

$$ \left( {\frac{{{\text{d}}f}}{{{\text{d}}t}}} \right) = \left( {\frac{AB}{BC}} \right) = \left( {\frac{{\left( {55.33 - 14.05} \right)}}{{\left( {240 - 60} \right)}}} \right) = {\mathbf{0}}{\mathbf{.229}}\,{\mathbf{s}}^{ - 1} $$
figure c

Example 11.2

The following data are obtained from an experiment of reduction of iron ore fine by the hydrogen gas at 973 K. Find out (a) initial rate of reduction from fraction of reduction (f) w.r.t time (t) graph, (b) order of reaction and rate constant.

Time (s)

36

60

120

180

240

300

420

600

Wt. loss (mg)

4.86

10.06

24.52

32.40

34.75

36.32

38.74

41.30

Given: Total removable oxygen present in iron ore is 56.18 mg.

Solution

$$ {\text{The fraction of reduction}}\,(f) = \left[ {\frac{{\left\{ {\left( {W_{1} - W_{2} } \right)} \right\} }}{{W_{\text{O}} }}} \right] = \left[ {\frac{{\left\{ {\left( {W_{1} - W_{2} } \right)} \right\} }}{56.18}} \right] $$
(1)

Fraction of reductions is calculated by Eq. (1) as follow:

Wt. loss (mg)

F

(1 − f)

Ln (1 − f)

[1/(1 − f)]

4.86

0.0865

0.9135

−0.0905

1.095

10.06

0.179

0.821

−0.197

1.218

24.52

0.436

0.564

−0.573

1.773

32.4

0.577

0.423

−0.86

2.364

34.75

0.6185

0.3815

−0.964

2.621

36.32

0.646

0.354

−1.038

2.825

38.74

0.6895

0.3105

−1.17

3.221

41.3

0.735

0.265

−1.328

3.774

Now, plot f versus t graph (Fig. 11.7), and from the initial plot we get initial rate of reduction.

Fig. 11.7
figure 7

f versus t

$$ {\text{The}}\,{\text{initial}}\,{\text{rate}}\,{\text{of}}\,{\text{reduction}}\left( {\frac{{\varvec{df}}}{{\varvec{dt}}}} \right) = \left( {\frac{{\varvec{AB}}}{{\varvec{BC}}}} \right) = \left( {\frac{{\left( {\mathbf{0.6 {-} 0.4}} \right)}}{{\left( {\mathbf{180 {-} 50}} \right)}}} \right) = {\mathbf{1}}{\mathbf{.54}} \times {\mathbf{10}}^{{{\mathbf{ - 3}}}} \,{\mathbf{s}}^{ - 1} $$

For zero order reaction the equation is:

$$ [A] = - kt + \left[ {A_{o} } \right] $$
(2)

where [A] = (1 − f), so plot (1 − f) versus t (Fig. 11.8).

Fig. 11.8
figure 8

(1 − f) versus t

In Fig. 11.8 shows the line is not straight line, so reaction is not zero order.

Now, we go for first-order reaction:

$$ \ln [A] = \ln \left[ {A_{0} } \right] - kt. $$
(3)

So plot ln (1 − f) versus t (Fig. 11.9).

Fig. 11.9
figure 9

ln (1 − f) vd t

Here, also the line is not straight line, so reaction is not first order.

From general equation:

$$ \left( {\frac{{a {-} x}}{{n {-} 1}}} \right)^{1 - n} = kt + C $$
(4)

Now, we go for second-order reaction, n = 2, x = f and a = 1;

So Eq. (4) become:

$$ \left( {\frac{1}{{1 {-} f}}} \right) = kt + C $$
(5)

Now, plot \( \left( {\frac{1}{{1 {-} {\mathbf{f}}}}} \right) \) versus t (Fig. 11.10). Now, the line is almost straight.

Fig. 11.10
figure 10

[1/(1 − f)] versus t

From the slope, we get rate constant = \( \left( {\frac{{\varvec{AB}}}{{\varvec{BC}}}} \right) = \left( {\frac{{\left( {2.8 {-} 1.0} \right)}}{{\left( {290 {-} 20} \right)}}} \right) = {\mathbf{6}}{\mathbf{.67}} \times {\mathbf{10}}^{{{\mathbf{ - 3}}}} \,{\mathbf{s}}^{{{\mathbf{ - 1}}}} \)

Hence, the reduction of iron ore fine by the hydrogen gas is second-order reaction and rate constant is 6.67 × 10−3 s−1.

Example 11.3

Initial weight of pure iron oxide (Fe2O3) fines is 296.5 mg. Oxide is reduced by hydrogen gas at 800 °C. Find out: (i) fraction of reduction with respect to time, and (ii) whether these data fit to the Mckewan equation?

The following data are obtained:

Time (s)

36

60

120

180

240

300

420

600

Wt. loss (mg)

6.69

14.05

31.95

48.14

55.14

59.34

64.94

70.24

Solution

Total removable oxygen present in iron oxide = 296.5 × 0.3 = 88.95 mg.

Time (s)

Weight loss (mg)

Fraction of reduction (R)

(1 − R)1/3

[1 − (1 − R)1/3]

36

6.69

0.075

0.974

0.026

60

14.05

0.158

0.944

0.056

120

31.95

0.359

0.862

0.138

180

48.14

0.541

0.771

0.229

240

55.14

0.620

0.724

0.276

300

59.34

0.667

0.693

0.307

420

64.94

0.730

0.646

0.354

600

70.24

0.790

0.594

0.406

From Eq. (11.12), by plotting [1 − (1 − R)1/3] versus time, line should be straight for Mckewan equation, below figure shows that line is not straight; hence, the given data for reduction of pure iron oxide (Fe2O3) fine does not obey the Mckewan equation.

figure d

Example 11.4

For gaseous reduction of iron ore fines, the following data are obtained for H2 reductions. Find the activation energy for H2 reduction of iron ore.

Temp (°C)

H2 reduction rate (s−1)

898

5.67 × 10−3

973

5.96 × 10−3

1048

6.66 × 10−3

1123

8.80 × 10−3

Solution

From Arrhenius equation: Rate, \( k = A \cdot e^{ - (E/RT)} \)

Therefore, ln \( k = \ln A - (E/RT) \)

Now, plot graph of ln k versus (1/T) and we get slope = − (E/R)

So, we calculate as follows:

Temp. (°C)

Temp. (T) (K)

1/T

1/T × 104

H2 reduction rate k (s−1)

ln k

898

1171

0.00085

8.54

5.67 × 10−3

−5.17

973

1246

0.00080

8.03

5.96 × 10−3

−5.12

1048

1321

0.00076

7.57

6.66 × 10−3

−5.01

1123

1396

0.00072

7.16

8.80 × 10−3

−4.73

figure e

From graph, \( {\text{Slope}} = - \left( {\frac{E}{R }} \right) = - \frac{AB}{BC } = - \left[ {\frac{{\left( { - 4.88 - \left( { - 5.10} \right)} \right)}}{{\left( {7.40 - 8.12} \right) \times 10^{ - 4} }}} \right] = - 3.06 \times 10^{3} \)

Therefore, \( \left( {\frac{E}{R }} \right) = - 3.06 \times 10^{3} \)

Hence, \( E = \left( { - 3.06 \times 10^{3} } \right) \times R = \left( { - 3.06 \times 10^{3} } \right) \times 8.314 = - 25.404 \;{\text{kJ}} \)

Therefore, the activation energy for H2 reduction of iron ore is \( - 25.404 \;{\text{kJ}}. \)

Example 11.5

For gasification of carbon by carbon dioxide, the following data are given for CO–CO2 gas mixture at 950 °C and 1 atm pressure. Find out the value of k1, k2, k3.

Gas composition

r × 104 (s−1)

Pure CO2

1.16

45% CO

0.16

30% CO

0.20

Solution

Since total pressure = 1 atm.

For pure CO2, \( p_{{{\text{CO}}_{2} }} = 1\;{\text{atm}} \) and pCO = 0

Putting above value in Eq. (11.39): \( r = \frac{{ k_{1} . p_{{{\text{CO}}_{2} }} }}{{1 + k_{2} . p_{{{\text{CO}}_{2} }} + k_{3} . p_{\text{CO}} }} \)

Therefore,

$$ 1.16 \, \times \, 10^{ - 4} = \left( {\frac{{k_{1} }}{{1 + k_{2} }}} \right) $$
(a)

For 45% CO, \( p_{\text{CO}} \) = 0.45 atm and \( p_{{{\text{CO}}_{2} }} \) = 0.55 atm

Hence, from Eq. (11.35):

$$ 0.16 \times 10^{ - 4} = \left( {\frac{{0.55k_{1} }}{{1 + 0.55k_{2} + 0.45k_{3} }}} \right) $$
(b)

Again for 30% CO, pCO = 0.3 atm and \( p_{{{\text{CO}}_{2} }} = 0.7\;{\text{atm}} \)

Hence, from Eq. (11.35):

$$ 0.2 \times 10^{ - 4} = \left( {\frac{{0.7k_{1} }}{{1 + 0.7k_{2} + 0.3k_{3} }}} \right) $$
(c)

Equation (a) is divided by Eq. (b): \( \left( {1.16/0.16} \right) = \{ \left( {\frac{{k_{1} }}{{1 + k_{2} }}} \right) /\left( {\frac{{0.55k_{1} }}{{1 + 0.55k_{2} + 0.45k_{3} }}} \right)\} \)

Or

$$ 0.45k_{3} - 3.44k_{2} = 2.99 $$
(d)

Again Eq. (a) is divided by Eq. (c): \( \left( {1.16/0.2} \right) = \{ \left( {\frac{{k_{1} }}{{1 + k_{2} }}} \right) /\left( {\frac{{0.7k_{1} }}{{1 + 0.7k_{2} + 0.3k_{3} }}} \right)\} \)

$$ {\text{Or}}\;3.06 = 0.3k_{3} - 3.36k_{2} $$
(e)

Eq. (d) is divided by

$$ 0.45{:}6.64 = k_{3} - 7.64k_{2} $$
(f)

Equation (e) is divided by

$$ 0.3{:}1.02 = k_{3} - 11.2k_{2} $$
(g)

Solving (f) and (g) we get: k2 = 1.58

Putting k2 value in Eq. (f) we get: k3 = 18.71

Putting k2 and k3 values in Eq. (a) we get: k1 = 2.99 × 10−4 s−1.

Example 11.6

From an experiment on sulphur removal from molten iron to slag at 1773 K, the following data is obtained:

Time, min

0

4

15

33

63

91

151

[S] %

0.16

0.14

0.132

0.091

0.072

0.033

0.012

Calculate first-order rate constant for de-sulphurization.

Solution

From first-order reaction: ln [A] = ln [A0] − kt; we can calculate of rate constant (k) by plotting a graph of ln [A] versus t (correlate with: y = mx + c)

So we calculate as per following:

Time, min

[S] %

ln ([S] %)

0

0.16

−1.83258

4

0.14

−1.96611

15

0.132

−2.02495

33

0.091

−2.3969

63

0.072

−2.63109

91

0.033

−3.41125

151

0.012

−4.42285

figure f

By plotting graph, the slope of line is rate constant (–k),

$$ {\text{Slope}} \left( { - k} \right) = - \frac{AB}{BC } = - \left[ {\frac{{\left( { - 2.5 - \left( { - 4.0} \right)} \right)}}{{\left( {40 - 128} \right)}}} \right] = - 0.01705\;{\min}^{-1}$$

So, first-order rate constant is 0.01705 min−1 for sulphur removal from molten iron to slag.

Problems

Problem 11.1

The initial weight of pure iron oxide (Fe2O3) powder is 300 mg. Iron oxide powder is reduced by hydrogen at 800 °C. In reduction experiment with time weight loss are noted as follows:

Time (s)

35

60

120

180

240

300

420

600

Wt. loss (mg)

6.65

14.0

31.95

48.15

55.35

59.35

64.94

70.24

Calculate (i) fraction of reduction (f) w.r.t time (t), (ii) draw f versus t graph, (iii) calculate rate of reduction (df/dt) at initial stage of reduction from the graph. [Ans: 3 × 10−3 s−1].

Problem 11.2

For gaseous reduction of iron ore fines following data is obtained for reduction by CO gas. Find the activation energies for such reductions.

Temp (°C)

Rate (s−1)

800

1.04 × 10−3

900

1.20 × 10−3

1000

1.72 × 10−3

1100

2.52 × 10−3

[Ans: −43.76 kJ]

Problem 11.3

Find the rate of the reaction at 300 K, if activation energy of the reaction is 167.36 kJ/mol. By raising the temperature by 100 K, how much reaction rate will increase?

[Ans: 1.927 × 107]

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, S.K., Chokshi, Y.B. (2020). Kinetics. In: Basic Concepts of Iron and Steel Making. Springer, Singapore. https://doi.org/10.1007/978-981-15-2437-0_11

Download citation

Publish with us

Policies and ethics