Skip to main content

Granular Computing Based on m-Polar Fuzzy Hypergraphs

  • Chapter
  • First Online:
Book cover Fuzzy Hypergraphs and Related Extensions

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 390))

  • 335 Accesses

Abstract

An m-polar fuzzy model, as an extension of fuzzy and bipolar fuzzy models, plays a vital role in modeling of real-world problems that involve multi-attribute, multipolar information, and uncertainty. The m-polar fuzzy models give increasing precision and flexibility to the system as compared to the fuzzy and bipolar fuzzy models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akram, M.: \(m\)-polar fuzzy graphs: theory, methods & applications. Studies in Fuzziness and Soft Computing, vol. 371, pp. 1–284. Springer (2019)

    Google Scholar 

  2. Akram, M.: Fuzzy Lie algebras. Studies in Fuzziness and Soft Computing, vol. 9, pp. 1–302. Springer (2018)

    Google Scholar 

  3. Akram, M., Luqman, A.: Intuitionistic single-valued neutrosophic hypergraphs. OPSEARCH 54(4), 799–815 (2017)

    Article  Google Scholar 

  4. Akram, M., Luqman, A.: Bipolar neutrosophic hypergraphs with applications. J. Intell. Fuzzy Syst. 33(3), 1699–1713 (2017)

    Article  Google Scholar 

  5. Akram, M., Sarwar, M.: Novel applications of \(m\)-polar fuzzy hypergraphs. J. Intell. Fuzzy Syst. 32(3), 2747–2762 (2016)

    Article  Google Scholar 

  6. Akram, M., Sarwar, M.: Transversals of \(m\)-polar fuzzy hypergraphs with applications. J. Intell. Fuzzy Syst. 33(1), 351–364 (2017)

    Article  Google Scholar 

  7. Akram, M., Shahzadi, G.: Hypergraphs in \(m\)-polar fuzzy environment. Mathematics 6(2), 28 (2018). https://doi.org/10.3390/math6020028

    Article  MathSciNet  MATH  Google Scholar 

  8. Akram, M., Shahzadi, G.: Directed hypergraphs under \(m\)-polar fuzzy environment. J. Intell. Fuzzy Syst. 34(6), 4127–4137 (2018)

    Article  Google Scholar 

  9. Akram, M., Shahzadi, G., Shum, K.P.: Operations on \(m\)-polar fuzzy \(r\)-uniform hypergraphs. Southeast Asian Bull. Math. (2019)

    Google Scholar 

  10. Berge, C.: Graphs and Hypergraphs. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  11. Chen, G., Zhong, N., Yao, Y.: A hypergraph model of granular computing. In: IEEE International Conference on Granular Computing, pp. 130–135 (2008)

    Google Scholar 

  12. Chen, J., Li, S., Ma, S., Wang, X.: \(m\)-polar fuzzy sets: an extension of bipolar fuzzy sets. Sci. World J. 8 (2014). https://doi.org/10.1155/2014/416530

    Google Scholar 

  13. Kaufmann, A.: Introduction a la Thiorie des Sous-Ensemble Flous, vol. 1. Masson, Paris (1977)

    Google Scholar 

  14. Lee, H.S.: An optimal algorithm for computing the maxmin transitive closure of a fuzzy similarity matrix. Fuzzy Sets Syst. 123, 129–136 (2001)

    Article  Google Scholar 

  15. Lin, T.Y.: Granular computing. Announcement of the BISC Special Interest Group on Granular Computing (1997)

    Google Scholar 

  16. Liu, Q., Jin, W.B., Wu, S.Y., Zhou, Y.H.: Clustering research using dynamic modeling based on granular computing. In: Proceeding of IEEE International Conference on Granular Computing, pp. 539–543 (2005)

    Google Scholar 

  17. Luqman, A., Akram, M., Koam, A.N.: Granulation of hypernetwork models under the \(q\)-rung picture fuzzy environment. Mathematics 7(6), 496 (2019)

    Article  Google Scholar 

  18. Luqman, A., Akram, M., Koam, A.N.: An \(m\)-polar fuzzy hypergraph model of granular computing. Symmetry 11, 483 (2019)

    Article  Google Scholar 

  19. Mordeson, J.N., Nair, P.S.: Fuzzy Graphs and Fuzzy Hypergraphs, 2nd edn. Physica Verlag, Heidelberg (2001)

    MATH  Google Scholar 

  20. Rosenfeld, A.: Fuzzy graphs. In: Zadeh, L.A., Fu, K.S., Shimura, M. (eds.) Fuzzy Sets and Their Applications, pp. 77–95. Academic Press, New York (1975)

    Google Scholar 

  21. Wang, Q., Gong, Z.: An application of fuzzy hypergraphs and hypergraphs in granular computing. Inf. Sci. 429, 296–314 (2018)

    Article  MathSciNet  Google Scholar 

  22. Wong, S.K.M., Wu, D.: Automated mining of granular database scheme. In: Proceeding of IEEE International Conference on Fuzzy Systems, pp. 690–694 (2002)

    Google Scholar 

  23. Yang, J., Wang, G., Zhang, Q.: Knowledge distance measure in multigranulation spaces of fuzzy equivalence relation. Inf. Sci. 448, 18–35 (2018)

    Article  MathSciNet  Google Scholar 

  24. Yao, Y.Y.: A partition model of granular computing. In: LNCS, vol. 3100, 232–253 (2004)

    Google Scholar 

  25. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

  26. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3(2), 177–200 (1971)

    Article  MathSciNet  Google Scholar 

  27. Zadeh, L.A.: The concept of a linguistic and application to approximate reasoning-I. Inf. Sci. 8, 199–249 (1975)

    Article  MathSciNet  Google Scholar 

  28. Zadeh, L.A.: Toward a generalized theory of uncertainty (GTU) an outline. Inf. Sci. 172, 1–40 (2005)

    Article  MathSciNet  Google Scholar 

  29. Zhang, W.R., Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis. Proc. IEEE Conf. 305–309 (1994)

    Google Scholar 

  30. Zhang, L., Zhang, B.: The structural analysis of fuzzy sets. J. Approx. Reason. 40, 92–108 (2005)

    Article  Google Scholar 

  31. Zhang, L., Zhang, B.: The Theory and Applications of Problem Solving-Quotient Space Based Granular Computing. Tsinghua University Press, Beijing (2007)

    Google Scholar 

  32. Zhang, L., Zhang, B.: Hierarchy and Multi-granular Computing, Quotient Space Based Problem Solving, pp. 45–103. Tsinghua University Press, Beijing (2014)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akram .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akram, M., Luqman, A. (2020). Granular Computing Based on m-Polar Fuzzy Hypergraphs. In: Fuzzy Hypergraphs and Related Extensions. Studies in Fuzziness and Soft Computing, vol 390. Springer, Singapore. https://doi.org/10.1007/978-981-15-2403-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2403-5_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2402-8

  • Online ISBN: 978-981-15-2403-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics