Advertisement

Granular Computing Based on q-Rung Picture Fuzzy Hypergraphs

Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 390)

Abstract

In this chapter, we present q-rung picture fuzzy hypergraphs and illustrate the formation of granular structures using q-rung picture fuzzy hypergraphs and level hypergraphs. Moreover, we define q-rung picture fuzzy equivalence relations and its’ associated q-rung picture fuzzy hierarchical quotient space structures. We also present an arithmetic example in order to demonstrate the benefits and validity of this model. This chapter is due to [19, 24].

References

  1. 1.
    Akram: Fuzzy Lie: algebras. Studies in Fuzziness and Soft Computing, vol. 9, pp. 1–302. Springer (2018)Google Scholar
  2. 2.
    Akram, A., Dar, J.M., Naz, S.: Certain graphs under Pythagorean fuzzy environment. Complex Intell. Syst. 5(2), 127–144 (2019)CrossRefGoogle Scholar
  3. 3.
    Akram, M., Ilyasa, F., Garg, H.: Multi-criteria group decision making based on ELECTRE I method in Pythagorean fuzzy information. Soft Comput. (2019).  https://doi.org/10.1007/s00500-019-04105-0
  4. 4.
    Akram, M., Dar, J.M., Naz, S.: Pythagorean Dombi fuzzy graphs. Complex Intell. Syst. (2019).  https://doi.org/10.1007/s40747-019-0109-0CrossRefGoogle Scholar
  5. 5.
    Akram, M., Habib, A., Davvaz, B.: Direct sum of \(n\) Pythagorean fuzzy graphs with application to group decision-making. J. Mult.-Valued Log. Soft Comput. 1–41 (2019)Google Scholar
  6. 6.
    Akram, M., Naz, S., Davvaz, B.: Simplified interval-valued Pythagorean fuzzy graphs with application. Complex Intell. Syst. 5(2), 229–253 (2019)CrossRefGoogle Scholar
  7. 7.
    Akram, M., Ilyas, F., Saeid, A.B.: Certain notions of Pythagorean fuzzy graphs. J. Intell. Fuzzy Syst. 36(6), 5857–5874 (2019)CrossRefGoogle Scholar
  8. 8.
    Akram, M., Dudek, W.A., Ilyas, F.: Group decision making based on Pythagorean fuzzy TOPSIS method. Int. J. Intell. Syst. 34(7), 1455–1475 (2019)CrossRefGoogle Scholar
  9. 9.
    Akram, M., Habib, A., Koam, A.N.: A novel description on edge-regular \(q\)-rung picture fuzzy graphs with application. Symmetry 11(4), 489 (2019).  https://doi.org/10.3390/sym110
  10. 10.
    Akram, M., Habib, A.: \(q\)-rung picture fuzzy graphs: a creative view on regularity with applications. J. Appl. Math. Comput. (2019).  https://doi.org/10.1007/s12190-019-01249-yMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ali, M.I.: Another view on \(q\)-rung orthopair fuzzy sets. Int. J. Intell. Syst. 33, 2139–2153 (2018)CrossRefGoogle Scholar
  12. 12.
    Atanassov. K.T.: Intuitionistic fuzzy sets. VII ITKR’s Session, Sofia (deposed in Central Science-Technical Library of Bulgarian Academy of Science, 1697/84) (1983) (in Bulgarian)Google Scholar
  13. 13.
    Berge, C.: Graphs and Hypergraphs. North-Holland, Amsterdam (1973)zbMATHGoogle Scholar
  14. 14.
    Chen, G., Zhong, N., Yao, Y.: A hypergraph model of granular computing. In: IEEE International Conference on Granular Computing, pp. 130–135 (2008)Google Scholar
  15. 15.
    Cuong, B.C.: Picture fuzzy sets. J. Comput. Sci. Cybern. 30(4), 409 (2014)Google Scholar
  16. 16.
    Cuong, B.C., Kreinovich, V.: Picture fuzzy sets—a new concept for computational intelligence problems. In: 2013 Third World Congress on Information and Communication Technologies, pp. 1–6 (2013)Google Scholar
  17. 17.
    Habib, A., Akram, M.M.: Farooq, \(q\)-rung orthopair fuzzy competition graphs with application in the soil ecosystem. Mathematics 7(1), 91 (2019).  https://doi.org/10.3390/math70100
  18. 18.
    Lee, H.S.: An optimal algorithm for computing the maxmin transitive closure of a fuzzy similarity matrix. Fuzzy Sets Syst. 123, 129–136 (2001)CrossRefGoogle Scholar
  19. 19.
    Li, L., Zhang, R., Wang, J., Shang, X., Bai, K.: A novel approach to multi-attribute group decision-making with \(q\)-rung picture linguistic information. Symmetry 10(5), 172 (2018)CrossRefGoogle Scholar
  20. 20.
    Lin, T.Y.: Granular computing. In: Announcement of the BISC Special Interest Group on Granular Computing (1997)Google Scholar
  21. 21.
    Liu, Q., Jin, W.B., Wu, S.Y., Zhou, Y.H.: Clustering research using dynamic modeling based on granular computing. In: Proceeding of IEEE International Conference on Granular Computing, pp. 539–543 (2005)Google Scholar
  22. 22.
    Luqman, A., Akram, M., Al-Kenani, A.N.: \(q\)-rung orthopair fuzzy hypergraphs with applications. Mathematics 7, 260 2019CrossRefGoogle Scholar
  23. 23.
    Luqman, A., Akram, M., Davvaz, B.: \(q\)-rung orthopair fuzzy directed hypergraphs: a new model with applications. J. Intell. Fuzzy Syst. (2019)Google Scholar
  24. 24.
    Luqman, A., Akram, M., Koam, A.N.: Granulation of hypernetwork models under the \(q\)-rung picture fuzzy environment. Mathematics 7(6), 496 (2019)CrossRefGoogle Scholar
  25. 25.
    Mordeson, J.N., Nair, P.S.: Fuzzy Graphs and Fuzzy Hypergraphs, 2nd edn. Physica Verlag, Heidelberg (2001)zbMATHGoogle Scholar
  26. 26.
    Singh, P.: Correlation coefficients for picture fuzzy sets. J. Intell. Fuzzy Syst. 28, 591604 (2015)MathSciNetGoogle Scholar
  27. 27.
    Wang, Q., Gong, Z.: An application of fuzzy hypergraphs and hypergraphs in granular computing. Inf. Sci. 429, 296–314 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wong, S.K.M., Wu, D.: Automated mining of granular database scheme. In: Proceeding of IEEE International Conference on Fuzzy Systems, pp. 690–694 (2002)Google Scholar
  29. 29.
    Yang, J., Wang, G., Zhang, Q.: Knowledge distance measure in multigranulation spaces of fuzzy equivalence relation. Inf. Sci. 448, 18–35 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Yager, R.R.: Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 25, 1222–1230 (2017)CrossRefGoogle Scholar
  31. 31.
    Yao, Y.Y.: A partition model of granular computing. In: LNCS vol. 3100, 232–253 (2004)Google Scholar
  32. 32.
    Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3(2), 177–200 (1971)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zadeh, L.A.: The concept of a linguistic and application to approximate reasoning-I. Inf. Sci. 8, 199–249 (1975)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zadeh, L.A.: Toward a generalized theory of uncertainty (GTU) an outline. Inf. Sci. 172, 1–40 (2005)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhang, L., Zhang, B.: The structural analysis of fuzzy sets. J. Approx. Reason. 40, 92–108 (2005)CrossRefGoogle Scholar
  36. 36.
    Zhang, L., Zhang, B.: The Theory and Applications of Problem Solving-Quotient Space Based Granular Computing. Tsinghua University Press, Beijing (2007)Google Scholar
  37. 37.
    Zhang, L., Zhang, B.: Hierarchy and Multi-granular Computing, Quotient Space Based Problem Solving, pp. 45–103. Tsinghua University Press, Beijing (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan
  2. 2.Department of MathematicsUniversity of the PunjabLahorePakistan

Personalised recommendations