Advertisement

Fuzzy Hypergraphs

Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 390)

Abstract

In this chapter, we present fundamental and technical concepts like fuzzy hypergraphs, fuzzy column hypergraphs, fuzzy row hypergraphs, fuzzy competition hypergraphs, fuzzy k-competition hypergraphs, fuzzy neighborhood hypergraphs, and \({\mathscr {N}}\)-hypergraphs. We describe applications of fuzzy competition hypergraphs in decision support systems, including predator–prey relations in ecological niches, social networks, and business marketing. Further, we introduce complex fuzzy hypergraphs, \(\mu e^{i\theta }\)-level hypergraphs, covering constructions, 2-sections, and \(L_2\)-sections of these hypergraphs.

References

  1. 1.
    Abdul-Jabbar, N., Naoom, J.H., Ouda, E.H.: Fuzzy dual graph. J. Al-Nahrain Univ. 12(4), 168–171 (2009)Google Scholar
  2. 2.
    Akram, M.: Studies in Fuzziness and Soft Computing. Fuzzy Lie algebras, vol. 9, pp. 1–302. Springer, Berlin (2018)Google Scholar
  3. 3.
    Akram, M., Alshehri, N.O.: Tempered interval-valued fuzzy hypergraphs. Sci. Bull. Ser. A Appl. Math. Phys. 77(1), 39–48 (2015)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Akram, M., Chen, W.J., Davvaz, B.: On \({\cal{N}}\)-hypergraphs. J. Intell. Fuzzy Syst. 26, 2937–2944 (2014)CrossRefGoogle Scholar
  5. 5.
    Berge, C.: Graphs and Hypergraphs. North-Holland, Amsterdam (1973)zbMATHGoogle Scholar
  6. 6.
    Craine, M.W.L.: Fuzzy hypergraphs and fuzzy intersection graphs. University of Idaho, Ph.D Thesis (1993)Google Scholar
  7. 7.
    Goetschel Jr., R.H.: Introduction to fuzzy hypergraphs and Hebbian structures. Fuzzy Sets Syst. 76, 113–130 (1995)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Goetschel Jr., R.H.: Fuzzy colorings of fuzzy hypergraphs. Fuzzy Sets Syst. 94, 185–204 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Goetschel Jr., R.H., Craine, W.L., Voxman, W.: Fuzzy transversals of fuzzy hypergraphs. Fuzzy Sets Syst. 84, 235–254 (1996)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jun, Y.B., Lee, K.J., Song, S.Z.: \({\cal{N}}\)-ideals of \(BCK/BCI\)-algebras. J. Chungcheong Math. Soc. 22, 417–437 (2009)Google Scholar
  11. 11.
    Kaufmann, A.: Introduction a la Thiorie des Sous-Ensemble Flous, 1. Masson, Paris (1977)Google Scholar
  12. 12.
    Lee-kwang, H., Lee, K.-M.: Fuzzy hypergraph and fuzzy partition. IEEE Trans. Syst. Man Cybern. 25(1), 196–201 (1995)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lung, R.I., Gasko, N., Suciu, M.A.: A hypergraph model for representing scientific output. Scientometrics 117(3), 1361–1379 (2018)CrossRefGoogle Scholar
  14. 14.
    Mendel, J.M.: Uncertain Rule-based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Upper Saddle River, New Jersey (2001)zbMATHGoogle Scholar
  15. 15.
    Mordeson, J.N., Chang-Shyh, P.: Operations on fuzzy graphs. Inf. Sci. 79, 159–170 (1994)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mordeson, J.N.: Fuzzy line graph. Pattern Recognit. Lett. 14, 381–384 (1993)CrossRefGoogle Scholar
  17. 17.
    Mordeson, J.N., Nair, P.S.: Fuzzy Graphs and Fuzzy Hypergraphs, 2nd edn. Physica Verlag, Heidelberg (2001)zbMATHGoogle Scholar
  18. 18.
    Mordeson, J.N., Yao, Y.Y.: Fuzzy cycles and fuzzy trees. J. Fuzzy Math. 10, 189–202 (2002)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Radhamani, C., Radhika, C.: Isomorphism on fuzzy hypergraphs. IOSR J. Math. 2(6), 24–31 (2012)Google Scholar
  20. 20.
    Radhika, C., Radhamani, C., Suresh, S.: Isomorphism properties on strong fuzzy hypergraphs. Int. J. Comput. Appl. 64(1)(2013)CrossRefGoogle Scholar
  21. 21.
    Ramot, D., Milo, R., Friedman, M., Kandel, A.: Complex fuzzy sets. IEEE Trans. Fuzzy Syst. 10(2), 171–186 (2002)CrossRefGoogle Scholar
  22. 22.
    Rosenfeld, A.: Fuzzy graphs. In: Zadeh, L.A., Fu, K.S., Shimura, M. (eds.) Fuzzy Sets and their Applications, pp. 77–95. Academic Press, New York (1975)Google Scholar
  23. 23.
    Samanta, S., Akram, M., Pal, M.: \(m\)-Step fuzzy competition graphs. J. Appl. Math. Comput. 47, 461–472 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Samanta, S., Pal, M.: Fuzzy \(k\)-competition graphs and \(p\)-competition fuzzy graphs. Fuzzy Inf. Eng. 5, 191–204 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sarwar, M., Akram, M., Alshehri, N.O.: A new method to decision-making with fuzzy competition hypergraphs. Symmetry 10(9), 404 (2018). https://doi.org/10.3390/sym10090404CrossRefGoogle Scholar
  26. 26.
    Sonntag, M., Teichert, H.M.: Competition hypergraphs. Discr. Appl. Math. 143, 324–329 (2004)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sonntag, M., Teichert, H.M.: Competition hypergraphs of digraphs with certain properties II, Hamiltonicity. Discuss. Math. Graph Theory 28, 23–34 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Thirunavukarasu, P., Suresh, R., Viswanathan, K.K.: Energy of a complex fuzzy graph. Int. J. Math. Sci. Eng. Appl. 10(1), 243–248 (2016)Google Scholar
  29. 29.
    Yazdanbakhsh, O., Dick, S.: A systematic review of complex fuzzy sets and logic. Fuzzy Sets Syst. 338, 1–22 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefGoogle Scholar
  31. 31.
    Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3(2), 177–200 (1971)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zadeh, L.A.: The concept of a linguistic and application to approximate reasoning-I. Inf. Sci. 8, 199–249 (1975)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan
  2. 2.Department of MathematicsUniversity of the PunjabLahorePakistan

Personalised recommendations