Skip to main content

Structural and Electronic Information Drawn from the Circularly Polarized Luminescence Spectra: Many Questions and Some Answers for Simple Organic Molecules, Polymers, and Molecular Aggregates

  • Chapter
  • First Online:
Circularly Polarized Luminescence of Isolated Small Organic Molecules
  • 1204 Accesses

Abstract

In the last ten years, circularly polarized luminescence (CPL) has greatly advanced: lots of data have been collected and many compounds have been synthesized with the aim of enhancing this chiroptical response. We review here a few aspects with illustrative examples. After examination of the relation of circular dichroism (CD) and CPL signals, we investigate how CPL can be used to probe environment: aggregation phenomena or the presence of metal ions or pH variations. We also study the CPL of inherently dissymmetric chromophores and of metal complexes. We finally touch upon whether CPL originates from molecules or from aggregated inhomogeneous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emeis CA, Oosterhoff LJ (1967) Emission of circularly polarized radiation by optically active compounds. Chem Phys Lett 1:129–132

    Article  CAS  Google Scholar 

  2. Dekkers HPJM, Emeis CA, Oosterhoff LJ (1969) Measurement of optical activity in racemic mixtures. J Am Chem Soc 91:4590–4590

    Article  Google Scholar 

  3. Schippers PH, van den Beukel A, Dekkers HPJM (1982) An accurate digital instrument for the measurement of circular polarisation of luminescence. J Phys E Sci Instrum 15:945–950

    Article  CAS  Google Scholar 

  4. Steinberg IZ, Gafni A (1972) Sensitive instrument for the study of circular polarization of luminescence. Rev Sci Instrum 43:409–413

    Article  CAS  Google Scholar 

  5. Richardson FS, Riehl JP (1977) Circularly polarized luminescence spectroscopy. Chem Rev 77:773–792

    Article  CAS  Google Scholar 

  6. Dekkers HPJM (2000) Circularly polarized luminescence: a probe for chirality in the excited state. In: Berova N, Nakanishi K, Woody RW (eds) Circular dichroism: principles and applications, 2nd edn. Wiley, New York, pp 185–215

    Google Scholar 

  7. Moffit W, Moscowitz A (1959) Optical activity in absorbing media. J Chem Phys 30:648–660

    Article  Google Scholar 

  8. Spano FC, Yamagata H (2011) Vibronic coupling in J-aggregates and beyond: a direct means of determining the exciton coherence length from the photoluminescence spectrum. J Phys Chem B 115:5133–5143

    Article  CAS  PubMed  Google Scholar 

  9. Carr R, Evans NH, Parker D (2012) Lanthanide complexes as chiral probes exploiting circularly polarized luminescence. Chem Soc Rev 41:7673–7686

    Article  CAS  PubMed  Google Scholar 

  10. Carr R, Puckrin R, McMahon BK, Pal R, Parker D, Pålsson L-O (2014) Induced circularly polarized luminescence arising from anion or protein binding to racemic emissive lanthanide complexes. Methods Appl Fluoresc 2:024007. (7 pp)

    Article  PubMed  CAS  Google Scholar 

  11. Brittain HG (1985) Excited-state optical activity. In: Molecular luminescence spectroscopy methods and applications. Part I. Wiley Interscience, New York; Chapter 6

    Google Scholar 

  12. Castiglioni E, Abbate S, Longhi G (2010) Revisiting with updated hardware and old spectroscopic technique: circularly polarized luminescence. Appl Spectrosc 64:1416–1419

    Article  CAS  PubMed  Google Scholar 

  13. Castiglioni E, Abbate S, Lebon F, Longhi G (2014) Chiroptical spectroscopic techniques based on fluorescence. Methods Appl Fluoresc 2:024006. (7 pages)

    Article  PubMed  CAS  Google Scholar 

  14. Imai Y, Nakano Y, Kawai T, Yuasa J (2018) A smart sensing method for object identification using circularly polarized luminescence from coordination-driven self-assembly. Angew Chem Int Ed 57:8973–8978

    Article  CAS  Google Scholar 

  15. Jasco International Company CPL-300 product (2018) https://jascoinc.com/products/spectroscopy/circularly-polarized-luminescence-cpl-300/download-cpl/

  16. Circularly Polarized Luminescence (CPL) with OLIS DSM 172 (2018) http://olisweb.com/portfolio-item/dsm-172/

  17. Pecul M, Ruud K (2011) The optical activity of beta, gamma-enones in ground and excited states using circular dichroism and circularly polarized luminescence. Phys Chem Chem Phys 13:643–650

    Article  CAS  PubMed  Google Scholar 

  18. Pritchard B, Autschbach J (2010) Calculation of vibrationally resolved circularly polarized luminescence of d-camphorquinone and (S,S)-trans-β-hydrindanone. ChemPhysChem 11:2409–2415

    Article  CAS  PubMed  Google Scholar 

  19. McAlexander HR, Crawford TD (2015) Simulation of circularly polarized luminescence spectra using coupled cluster theory. J Chem Phys 142:154101

    Article  PubMed  CAS  Google Scholar 

  20. Saleh N, Moore B, Srebro M, Vanthuyne N, Toupet L, Williams JAG, Roussel C, Deol KK, Muller G, Autschbach J, Crassous J (2015) Acid/base-triggered switching of circularly polarized luminescence and electronic circular dichroism in organic and organometallic helicenes. Chemistry 21:1673–1681

    Article  CAS  PubMed  Google Scholar 

  21. Fujiki M, Kawagoe Y, Nakano Y, Nakao A (2013) Mirror-symmetry-breaking in poly[(9,9-di-n-octylfluorenyl- 2,7-diyl)-alt-biphenyl] (PF8P2) is susceptible to terpene chirality, achiral solvents, and mechanical stirring. Molecules 18:7035–7057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zinna F, Di Bari L (2015) Lanthanide circularly polarized luminescence: bases and applications. Chirality 27:1–13

    Article  CAS  PubMed  Google Scholar 

  23. Wu T, Kapitàn J, Bouř P (2015) Detection of circularly polarized luminescence of a Cs-EuIII complex in Raman optical activity experiments. Angew Chem Int Ed 54:14933–14936

    Article  CAS  Google Scholar 

  24. Sánchez-Carnerero E, Agarrabeitia AR, Moreno F, Maroto BL, Muller G, Ortiz MJ, de la Moya S (2015) Circularly polarized luminescence from simple organic molecules. Chemistry 21:13488–13500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Tanaka H, Inoue Y, Mori T (2018) Circularly polarized luminescence and circular dichroisms in small organic molecules: correlation between excitation and emission dissymmetry factors. ChemPhotoChem 2:386–402

    Article  CAS  Google Scholar 

  26. Kitayama Y, Amako T, Suzuki N, Fujiki M, Imai Y (2014) Enhancing circularly polarised luminescence by extending the π-conjugation of axially chiral compounds. Org Biomol Chem 12:4342–4346

    Article  CAS  PubMed  Google Scholar 

  27. Kumar J, Nakashima T, Kawai T (2015) Circularly polarized luminescence in chiral molecules and supramolecular assemblies. J Phys Chem Lett 6:3445–3452

    Article  CAS  PubMed  Google Scholar 

  28. Longhi G, Castiglioni E, Koshoubu J, Mazzeo G, Abbate S (2016) Circularly polarized luminescence: a review of experimental and theoretical aspects. Chirality 28:696–707

    Article  CAS  PubMed  Google Scholar 

  29. Saleh N, Srebro M, Reynaldo T, Vanthuyne N, Toupet L, Chang VI, Muller G, Williams G, Roussel C, Autschbach J, Crassous J (2015) Enantio-enriched CPL-active helicene–bipyridine–rhenium complexes. Chem Commun 51:3754–3757

    Article  CAS  Google Scholar 

  30. Abbate S, Longhi G, Lebon F, Castiglioni E, Superchi S, Pisani L, Fontana F, Torricelli F, Caronna T, Villani C, Sabia R, Tommasini M, Lucotti A, Mendola D, Mele A, Lightner DA (2014) Helical sense-responsive and substituent-sensitive features in vibrational and electronic circular dichroism, in circularly polarized luminescence and in Raman spectra of some simple optically active hexahelicenes. J Phys Chem C 118:1682–1695

    Article  CAS  Google Scholar 

  31. Liu Y, Cerezo J, Mazzeo G, Lin N, Zhao X, Longhi G, Abbate S, Santoro F (2016) Vibronic coupling explains the different aspect of electronic circular dichroism and of circularly polarized luminescence spectra of hexahelicenes. J Chem Theory Comput 12:2799–2819

    Article  CAS  PubMed  Google Scholar 

  32. Sato T, Tajima N, Ueno H, Harada T, Fujiki M, Imai Y (2017) Binaphthyl luminophores with triphenylsilyl groups: sign inversion of circularly polarized luminescence and circular dichroism. Tetrahedron 72:7032–7038

    Article  CAS  Google Scholar 

  33. Longhi G, Castiglioni E, Abbate S, Lebon F, Lightner DA (2013) Experimental and calculated CPL spectra and related spectroscopic data of camphor and other simple chiral bicyclic ketones. Chirality 25:589–599

    Article  CAS  PubMed  Google Scholar 

  34. Schippers PH, van der Ploeg JPM, Dekkers HPJM (1983) Circular polarization in the Fluorescence of β,γ-enones: distortion in the 1∗ states. J Am Chem Soc 105:84–89

    Article  CAS  Google Scholar 

  35. Dekkers HPJM, Closs LEJ (1976) The optical activity of low symmetry ketones in absorption and emission. J Am Chem Soc 98:2210–2219

    Article  CAS  Google Scholar 

  36. Moscowitz A (1960) Theory and analysis of rotatory dispersion curves. In: Djerassi C (ed) Optical rotatory dispersion. McGraw-Hill, New York, pp 150–177

    Google Scholar 

  37. Lightner DA, Gurst JE (2000) Organic conformational analysis and stereochemistry from circular dichroism spectroscopy. Wiley, New York, Chapter 4

    Google Scholar 

  38. Morcillo SP, Miguel D, Alvarez de Cienfuegos L, Justicia J, Abbate S, Castiglioni E, Bour C, Ribagorda M, Cardenas DJ, Paredes JM, Crovetto J, Choquesillo-Lazarte D, Mota AJ, Carreño MC, Longhi G, Cuerva JM (2016) Stapled helical o-OPE foldamers as new circularly polarized luminescence emitters based on carbophilic interactions with Ag(I)-sensitivity. Chem Sci 7:5663–5670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amako T, Nakabayashi K, Suzuki N, Guo S, Rahim NAA, Harada T, Fujiki M, Imai Y (2015) Pyrene magic: chiroptical enciphering and deciphering 1,3-dioxolane bearing two wirepullings to drive two remote pyrenes. Chem Commun 51:8237–8240

    Article  CAS  Google Scholar 

  40. Hara N, Yanai M, Kaji D, Shizuma M, Tajima N, Fujiki M, Imai Y (2000) A pivotal biaryl rotamer bearing two floppy pyrenes that exhibits cryptochiral characteristics in the ground state. ChemistrySelect 3:9970

    Article  CAS  Google Scholar 

  41. Reiné P, Justicia J, Morcillo SP, Abbate S, Vaz B, Ribagorda M, Orte Á, Álvarez de Cienfuegos L, Longhi G, Campaña AG, Miguel D, Cuerva JM (2018) Pyrene-containing ortho-oligo(phenylene)ethynylene foldamer as a ratiometric probe based on circularly polarized luminescence. J Org Chem 83:4455–4463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Domínguez Z, López-Rodríguez R, Álvarez E, Abbate S, Longhi G, Pischel U, Ros A (2018) Azabora[5]helicene charge-transfer dyes show efficient and spectrally variable circularly polarized luminescence. Chem Eur J 24:12660–12668

    Article  PubMed  CAS  Google Scholar 

  43. Loksztejn A, Dzwolak W (2008) Chiral bifurcation in aggregating insulin: an induced circular dichroism study. J Mol Biol 379:9–16

    Article  CAS  PubMed  Google Scholar 

  44. Dzwolak W (2010) Vortex-induced chiral bifurcation in aggregating insulin. Chirality 2:E154–E160

    Article  CAS  Google Scholar 

  45. Rybicka A, Longhi G, Castiglioni E, Abbate S, Dzwolak W, Babenko V, Pecul M, Thioflavin T (2016) Thioflavin T: Electronic circular dichroism and circularly polarized luminescence induced by amyloid fibrils. ChemPhysChem 17: 2931-2937

    Article  CAS  PubMed  Google Scholar 

  46. Cuerva JM, Resa S, Miguel D, Guisán-Ceinos S, Mazzeo G, Choquesillo-Lazarte D, Abbate S, Crovetto L, Cárdenas DJ, Carreño MC, Ribagorda M, Longhi G, Mota AJ, Álvarez de Cenfuegos L (2018) Sulfoxide-induced homochiral folding of o-OPEs by Ag(I) templating: structure and chiroptical properties. Chem Eur J 24:2653–2662

    Article  PubMed  CAS  Google Scholar 

  47. Reiné P, Ortuño AM, Resa S, Álvarez de Cienfuegos L, Blanco V, Ruedas-Rama MJ, Mazzeo G, Abbate S, Lucotti A, Tommasini M, Guisán-Ceinos S, Ribagorda M, Campaña AG, Mota A, Longhi G, Miguel D, Cuerva JM (2018) OFF/ON switching of circularly polarized luminescence by oxophilic interaction of homochiral sulfoxide-containing o-OPEs with metal cations. Chem Commun 54:13985–13988

    Article  Google Scholar 

  48. Mazzeo G, Abbate S, Longhi G, Castiglioni E, Boiadjiev SE, Lightner DA (2016) pH dependent chiroptical properties of (1R,2R)- and (1S,2S)-trans-cyclohexane diesters and diamides from VCD, ECD, and CPL spectroscopy. J Phys Chem B 120:2380–2387

    Article  CAS  PubMed  Google Scholar 

  49. Mislow K (1965) Introduction to stereochemistry. WA Benjamin, New York, pp 65–66

    Google Scholar 

  50. Longhi G, Abbate S, Mazzeo G, Castiglioni E, Mussini PR, Benincori T, Martinazzo R, Sannicolò F (2014) Structural and optical properties of inherently chiral polythiophenes: a combined CD-electrochemistry, circularly polarized luminescence and TDDFT investigation. J Phys Chem C 118:16019–16027

    Article  CAS  Google Scholar 

  51. Benincori T, Appoloni G, Mussini PR, Arnaboldi S, Cirilli R, Quartapelle Procopio E, Panigati M, Abbate S, Mazzeo G, Longhi G (2018) Searching for models exhibiting high circularly polarized luminescence: the electroactive inherently chiral oligothiophenes. Chemistry 24:11082–11093

    Article  CAS  PubMed  Google Scholar 

  52. Sannicolò F, Mussini PR, Benincori T, Cirilli R, Abbate S, Arnaboldi S, Casolo S, Castiglioni E, Longhi G, Martinazzo R, Panigati M, Pappini M, Quartapelle Procopio E, Rizzo S (2014) Inherently chiral macrocyclic oligothiophenes: easily accessible electrosensitive cavities with outstanding enantioselection performances. Chemistry 20:15298–15302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Longhi G, Castiglioni E, Villani C, Sabia R, Menichetti S, Viglianisi C, Devlin F, Abbate S (2016) Chiroptical properties of the ground and excited states of two thia-bridged triarylamine heterohelicenes. J Photochem Photobiol A Chem 331:138–145

    Article  CAS  Google Scholar 

  54. Nakai Y, Mori T, Inoue Y (2012) Theoretical and experimental studies on circular dichroism of carbo[n]helicenes. J Phys Chem A 116:7372–7385

    Article  CAS  PubMed  Google Scholar 

  55. Yang W, Longhi G, Abbate S, Lucotti A, Tommasini M, Villani C, Catalano VJ, Lykhin AO, Varganov SA, Chalifoux WA (2017) Chiral peropyrene: synthesis, structure, and properties. J Am Chem Soc 139:13102–13109

    Article  CAS  PubMed  Google Scholar 

  56. Cruz CM, Márquez IR, Mariz IFA, Blanco V, Sánchez-Sánchez C, Sobrado JM, Martín-Gago JA, Cuerva JM, Maçôas E, Campaña A (2018) Enantiopure distorted ribbon-shaped nanographene combining two-photon absorption based upconversion and circularly polarized luminescence. Chem Sci 9:3917–3924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Citti C, Battisti UM, Ciccarella G, Maiorano V, Gigli G, Abbate S, Mazzeo G, Castiglioni E, Longhi G, Cannazza G (2016) Analytical and preparative enantioseparation and main chiroptical properties of Iridium(III) bis(4,6-difluorophenylpyridinato)picolinato. J Chromatogr A 1467:335–346

    Article  CAS  PubMed  Google Scholar 

  58. Mazzeo G, Fusè M, Longhi G, Rimoldi I, Cesarotti E, Crispini A, Abbate S (2016) Vibrational circular dichroism and chiroptical properties of chiral Ir(III) luminescent complexes. Dalton Trans 45:992–999

    Article  CAS  PubMed  Google Scholar 

  59. Kamiński M, Cukras J, Pecul M, Rizzo A, Coriani S (2015) A computational protocol for the study of circularly polarized phosphorescence and circular dichroism in spin-forbidden absorption. Phys Chem Chem Phys 17:19079–19086

    Article  PubMed  CAS  Google Scholar 

  60. Ionescu A, Godbert N, Ricciardi L, La Deda M, Aiello I, Ghedini M, Rimoldi I, Cesarotti E, Facchetti G, Mazzeo G, Longhi G, Abbate S, Fusè M (2017) Luminescent water-soluble cycloplatinated complexes: structural, photophysical, electrochemical and chiroptical properties. Inorg Chim Acta 461:267–274

    Article  CAS  Google Scholar 

  61. Schulte TR, Holstein JH, Krause L, Michel R, Stalke D, Sakuda E, Umakoshi K, Longhi G, Abbate S, Clever GH (2017) Chiral-at-metal phosphorescent square-planar Pt(II)-complexes from an achiral organometallic ligand. J Am Chem Soc 139:6863–6866

    Article  CAS  PubMed  Google Scholar 

  62. Steinberg IZ, Ehrenberg B (1974) A theoretical evaluation of the effect of photoselection on the measurement of the circular polarization of luminescence. J Chem Phys 61:3382–3386

    Article  CAS  Google Scholar 

  63. Shindo Y, Nakagawa M (1985) On the artifacts in circularly polarized emission spectroscopy. Appl Spectrosc 39:32–38

    Article  CAS  Google Scholar 

  64. Dekkers HPJM, Moraal PF, Timper JM, Riehl JP (1985) Optical artifacts in circularly polarized luminescence spectroscopy. Appl Spectrosc 39:818–821

    Article  CAS  Google Scholar 

  65. Shindo Y, Oda Y (1992) Mueller matrix approach to fluorescence spectroscopy. Part I: mueller matrix expressions for fluorescent samples and their application to problems of circularly polarized emission spectroscopy. Appl Spectrosc 46:1251–1259

    Article  CAS  Google Scholar 

  66. Kuroda R, Harada T, Shindo Y (2001) A solid-state dedicated circular dichroism spectrophotometer: development and application. Rev Sci Instrum 72:3802–3810

    Article  CAS  Google Scholar 

  67. Thomas A, Chervy T, Azzini S, Li M, George J, Genet C, Ebbesen TW (2018) Mueller polarimetry of chiral supramolecular assembly. J Phys Chem C 122:14205–14212

    Article  CAS  Google Scholar 

  68. Harada T, Hayakawa H, Watanabe M, Takamoto M (2016) A solid-state dedicated circularly polarized luminescence spectrophotometer: development and application. Rev Sci Instrum 87:075102

    Article  PubMed  CAS  Google Scholar 

  69. Katayama K, Hirata S, Vacha M (2014) Circularly polarized luminescence from individual microstructures of conjugated polymer aggregates with solvent-induced chirality. Phys Chem Chem Phys 7:17983–17987

    Article  Google Scholar 

  70. Tsumatori H, Harada T, Yuasa J, Hasegawa Y, Kawai T (2011) Circularly polarized light from chiral lanthanide(III) complexes in single crystals. Appl Phys Express 4:011601

    Article  CAS  Google Scholar 

  71. Zhao B, Pan K, Deng J (2018) Intense circularly polarized luminescence contributed by helical chirality of monosubstituted polyacetylenes. Macromolecules 51:7104–7111

    Article  CAS  Google Scholar 

  72. Fujiki M, Donguri Y, Zhao Y, Nakao A, Suzuki N, Yoshida K, Zhang W (2016) Photon magic: chiroptical polarisation, depolarisation, inversion, retention and switching of non-photochromic light-emitting polymers in optofluidic medium. Polym Chem 6:1627–1638

    Article  CAS  Google Scholar 

  73. Langeveld-Voss BMW, Janssen RAJ, Christiaans MPT, Meskers SCJ, Dekkers HPJM, Meijer EW (1996) Circular dichroism and circular polarization of photoluminescence of highly ordered poly{3,4-di[(S)-2-methylbutoxy]thiophene}. J Am Chem Soc 118:4908–4909

    Article  CAS  Google Scholar 

  74. Castiglioni E, Abbate S, Lebon F, Longhi G (2012) UV, CD, fluorescence and CPL spectra of regioregular poly-[3-((S)-2-methylbutyl)-thiophene] in solution. Chirality 24:725–730

    Article  CAS  PubMed  Google Scholar 

  75. Roose J, Tang BZ, Wong KS (2016) Circularly-polarized luminescence (CPL) from chiral AIE molecules and macrostructures. Small 12:6495–6512

    Article  CAS  PubMed  Google Scholar 

  76. Chen SH, Katsis D, Schmid AW, Mastrangelo JC, Tsutsui T, Blanton TN (1999) Circularly polarized light generated by photoexcitation of luminophores in glassy liquid-crystal films. Nature 397:506–508

    Article  CAS  Google Scholar 

  77. Kulkarni C, Meskers SCJ, Palmans ARA, Meijer EW (2018) Amplifying chiroptical properties of conjugated polymer thin-film using an achiral additive. Macromolecules 51:5883–5890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Watanabe K, Osaka I, Yorozuya S, Akagi K (2012) Helically π-stacked thiophene-based copolymers with circularly polarized fluorescence: high dissymmetry factors enhanced by self-ordering in chiral nematic liquid crystal phase. Chem Mater 24:1011–1024

    Article  CAS  Google Scholar 

  79. Craig MR, Jonkheijm P, Meskers SCJ, Schenning APHJ, Meijer EW (2003) The chiroptical properties of a thermally annealed film of chiral substituted polyfluorene depend on film thickness. Adv Mater 15:1435–1438

    Article  CAS  Google Scholar 

  80. Rizzo P, Lepera E, Guerra G (2014) Enantiomeric guests with the same signs of chiral optical responses. Chem Commun 50:8185–8188

    Article  CAS  Google Scholar 

  81. Rizzo P, Abbate S, Longhi G, Guerra G (2017) Circularly polarized luminescence of syndiotactic polystyrene. Opt Mater 73:595–601

    Article  CAS  Google Scholar 

  82. Sano T, Uchiyama A, Sago T, Itagaki H (2017) Fluorescence behavior of syndiotactic polystyrene and its derivative: formation of a ground-state dimer in the solid state. Eur Polym J 90:114–121

    Article  CAS  Google Scholar 

  83. Shindo Y, Ohmi Y (1985) Problems of CD spectrometers. 3. Critical comments on liquid crystal induced circular dichroism. J Am Chem Soc 107:91–97

    Article  CAS  Google Scholar 

  84. Lakhwani G, Meskers SCJ, Janssen RAJ (2007) Circular differential scattering of light in films of chiral polyfluorene. J Phys Chem B 111:5124–5131

    Article  CAS  PubMed  Google Scholar 

  85. Maoz BM, BenMoshe A, Vestler D, Bar-Elli O, Markovich G (2012) Chiroptical effects in planar achiral plasmonic oriented nanohole arrays. Nano Lett 12:2357–2361

    Article  CAS  PubMed  Google Scholar 

  86. Harada T, Moriyama H (2013) Solid-state circular dichroism spectroscopy. In: Encyclopedia of polymer science and technology. Wiley, Hoboken, NJ, pp 1–29

    Google Scholar 

  87. Tachibana T, Mori T, Hori K (1979) New type of twisted mesophase in jellies and solid films of chiral 12-hydroxyoctadecanoic acid. Nature 278:578–579

    Article  CAS  Google Scholar 

  88. Zhao B, Pan K, Deng J (2019) Combining chiral helical polymer with achiral luminophores for generating full-color, on−off, and switchable circularly polarized luminescence. Macromolecules 52:376–384

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Longhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Longhi, G., Abbate, S. (2020). Structural and Electronic Information Drawn from the Circularly Polarized Luminescence Spectra: Many Questions and Some Answers for Simple Organic Molecules, Polymers, and Molecular Aggregates. In: Mori, T. (eds) Circularly Polarized Luminescence of Isolated Small Organic Molecules. Springer, Singapore. https://doi.org/10.1007/978-981-15-2309-0_10

Download citation

Publish with us

Policies and ethics