Skip to main content

Chapter 12 Motility and Guidance of Sea Urchin Sperm

  • Chapter
  • First Online:
Reproduction in Aquatic Animals

Abstract

The sperm tail movement is a direct result from contributions of fluid mechanics, elasticity, and molecular-motor activity. Within the flagellum, the axonemal engine yields overall mechanical response and, ultimately, motility. This chapter attempts to provide a comprehensive and integrative overview of the relationship between the mechanics, signaling of sperm propulsion, and the physiological function of these cells in 3D. Sperm swimming, with its intricate coupling between the regulations of the flagellar beating has to ultimately fulfill its evolutionary function honed in their natural environment, the open sea. The strategies that are being employed to unravel this fascinating and fundamental process are revisited, where the sliding of water bodies shape chemical landscapes sensed by sperms during their journey, affecting motility patterns and directly determining gamete encounter rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzelius B (1959) Electron microscopy of the sperm tail; results obtained with a new fixative. J Biophys Biochem Cytol 5:269–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilera LU, Galindo BE, Sánchez D, Santillán M (2012) What is the core oscillator in the speract-activated pathway of the Strongylocentrotus purpuratus sperm flagellum? Biophys J 102:2481–2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez L, Dai L, Friedrich BM, Kashikar ND, Gregor I, Pascal R, Kaupp UB (2012) The rate of change in Ca2+ concentration controls sperm chemotaxis. J Cell Biol 196:653–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antman SS (2005) Nonlinear problems of elasticity. Applied mathematical sciences. Springer, New York

    Google Scholar 

  • Aref H, Blake JR, Budišić M, Cardoso SSS, Cartwright JHE, Clercx HJH, El Omari K, Feudel U, Golestanian R, Gouillart E, van Heijst GF, Krasnopolskaya TS, Le Guer Y, MacKay RS, Meleshko VV, Metcalfe G, Mezić I, de Moura APS, Piro O, Speetjens MFM, Sturman R, Thiffeault J-L, Tuval I (2017) Frontiers of chaotic advection. Rev Mod Phys 89:025007

    Article  Google Scholar 

  • Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Böhmer M, Van Q, Weyand I, Hagen V, Beyermann M, Matsumoto M, Hoshi M, Hildebrand E, Kaupp UB (2005) Ca2+ spikes in the flagellum control chemotactic behavior of sperm. EMBO J 24:2741–2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brokaw CJ (1958) Chemotaxis of bracken spermatozoids. The role of bimalate ions. J Exp Biol 35:192–196

    CAS  Google Scholar 

  • Brokaw CJ (1971) Bend propagation by a sliding filament model for flagella. J Exp Biol 55:289–304

    CAS  PubMed  Google Scholar 

  • Brokaw CJ (1972a) Flagellar movement: a sliding filament model. Science (80-) 178:455–462

    Article  CAS  Google Scholar 

  • Brokaw CJ (1972b) Computer simulation of flagellar movement I Demonstration of stable bend propagation. Biophys J 12:564–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brokaw CJ (1979) Calcium-induced asymmetrical beating of triton-demembranated sea urchin sperm flagella. J Cell Biol 82:401–411

    Article  CAS  PubMed  Google Scholar 

  • Brokaw CJ (1985) Computer simulation of flagellar movement. VI. Simple curvature-controlled models are incompletely specified. Biophys J 48:633–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brokaw CJ (1989) Direct measurements of sliding between outer doublet microtubules in swimming sperm flagella. Science (80-) 243:1593–1596

    Article  CAS  Google Scholar 

  • Brokaw CJ (1991) Microtubule sliding in swimming sperm flagella: direct and indirect measurements on sea urchin and tunicate spermatozoa [published erratum appears in J Cell Biol 1991 Nov;115(4):1204]. J Cell Biol 114:1201–1215

    Article  CAS  PubMed  Google Scholar 

  • Brokaw CJ (2009) Thinking about flagellar oscillation. Cell Motil Cytoskeleton 66:425–436

    Article  CAS  PubMed  Google Scholar 

  • Brokaw CJ, Rintala DR (1975) Computer simulation of flagellar movement. III. Models incorporating cross-bridge kinetics. J Mechanochem Cell Motil 3:77–86

    CAS  PubMed  Google Scholar 

  • Camalet S, Jülicher F (2000) Generic aspects of axonemal beating. New J Phys 2:24. https://doi.org/10.1088/1367-2630/2/1/324

    Article  Google Scholar 

  • Chung JJ, Miki K, Kim D, Shim SH, Shi HF, Hwang JY, Cai X, Iseri Y, Zhuang X, Clapham DE (2017) Catsperς regulates the structural continuity of sperm Ca2+ signaling domains and is required for normal fertility. eLife 6:1–25

    Google Scholar 

  • Chwang AT, Wu TY (1971) A note on the helical movement of micro-organisms. Proc R Soc Lond Ser B Biol Sci 178:327–346

    CAS  Google Scholar 

  • Cook SP, Brokaw CJ, Muller CH, Babcock DF (1994) Sperm chemotaxis: egg peptides control cytosolic calcium to regulate flagellar responses. Dev Biol 165:10–19

    Article  CAS  PubMed  Google Scholar 

  • Corkidi G, Taboada B, Wood CD, Guerrero A, Darszon A (2008) Tracking sperm in three-dimensions. Biochem Biophys Res Commun 373:125–129

    Article  CAS  PubMed  Google Scholar 

  • Cosson J, Huitorel P, Gagnon C (2003) How spermatozoa come to be confined to surfaces. Cell Motil Cytoskeleton 54:56–63

    Article  CAS  PubMed  Google Scholar 

  • Coy R, Gadêlha H (2017) The counterbend dynamics of cross-linked filament bundles and flagella. J R Soc Interface 14:20170065

    Article  PubMed  PubMed Central  Google Scholar 

  • Crenshaw HC (1989) Kinematics of helical motion of microorganisms capable of motion with four degrees of freedom. Biophys J 56:1029–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crenshaw HC (1990) Helical orientation—a novel mechanism for the orientation of microorganisms. Springer, Berlin, pp 361–386

    Google Scholar 

  • Crenshaw HC (1993a) Orientation by helical motion—I. Kinematics of the helical motion of organisms with up to six degrees of freedom. Bull Math Biol 55:197–212

    Article  Google Scholar 

  • Crenshaw HC (1993b) Orientation by helical motion—III. Microorganisms can orient to stimuli by changing the direction of their rotational velocity. Bull Math Biol 55:231–255

    Article  Google Scholar 

  • Crenshaw HC (1996) A new look at locomotion in microorganisms: rotating and translating. Am Zool 36:608–618

    Article  Google Scholar 

  • Crenshaw HC, Edelstein-Keshet L (1993) Orientation by helical motion—II. Changing the direction of the axis of motion. Bull Math Biol 55:213–230

    Article  Google Scholar 

  • Darszon A, Guerrero A, Galindo BE, Nishigaki T, Wood CD (2008) Sperm-activating peptides in the regulation of ion fluxes, signal transduction and motility. Int J Dev Biol 52:595–606

    Article  CAS  PubMed  Google Scholar 

  • Darszon A, Nishigaki T, Beltran C, Trevino CL, Treviño CL (2011) Calcium channels in the development, maturation, and function of spermatozoa. Physiol Rev 91:1305–1355

    Article  CAS  PubMed  Google Scholar 

  • Denny MW, Nelson EK, Mead KS (2002) Revised estimates of the effects of turbulence on fertilization in the purple sea urchin, Strongylocentrotus purpuratus. Biol Bull 203:275–277

    Article  PubMed  Google Scholar 

  • DiPetrillo C, Smith E (2009) Calcium regulation of ciliary motility analysis of axonemal calcium-binding proteins. Methods Cell Biol 92:163–180

    Article  CAS  PubMed  Google Scholar 

  • Espinal J, Aldana M, Guerrero A, Wood C, Darszon A, Martínez-Mekler G (2011) Discrete dynamics model for the speract-activated Ca2+ signaling network relevant to sperm motility. PLoS One 6:e22619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espinal-Enríquez J, Priego-Espinosa DA, Alberto D, Beltrán C, Martínez-Mekler G, Darszon A, Beltrán C, Martínez-Mekler G (2017) Network model predicts that CatSper is the main Ca2+ channel in the regulation of sea urchin sperm motility. Sci Rep 7:4236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everaers R, Bundschuh R, Kremer K (1995) Fluctuations and stiffness of double-stranded polymers: railway-track model. EPL (Europhys. Lett.) 29:263–268

    Article  Google Scholar 

  • Fawcett DW (1975) The mammalian spermatozoon. Dev Biol 44:394–436

    Article  CAS  PubMed  Google Scholar 

  • Friedrich BM, Jülicher F (2007) Chemotaxis of sperm cells. Proc Natl Acad Sci 104:13256–13261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrich BM, Jülicher F (2008) The stochastic dance of circling sperm cells: sperm chemotaxis in the plane. New J Phys 10:123025

    Article  Google Scholar 

  • Friedrich BM, Jülicher F (2009) Steering chiral swimmers along noisy helical paths. Phys Rev Lett 103:068102

    Article  CAS  PubMed  Google Scholar 

  • Gadelha HAB (2018) The filament-bundle elastica. IMA J Appl Math 83:634–654

    Article  Google Scholar 

  • Gadêlha H, Gaffney EA, Smith DJ, Kirkman-Brown JC (2010) Nonlinear instability in flagellar dynamics: a novel modulation mechanism in sperm migration? J R Soc Interface 7:1689–1697

    Article  PubMed  PubMed Central  Google Scholar 

  • Gadelha H, Gaffney EA, Goriely A (2013) The counterbend phenomenon in flagellar axonemes and cross-linked filament bundles. Proc Natl Acad Sci U S A 110:12180–12185

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaffney EA, Gadêlha H, Smith DJ, Blake JR, Kirkman-Brown JC (2011) Mammalian sperm motility: observation and theory. Annu Rev Fluid Mech 43:501–528

    Article  Google Scholar 

  • García-Rincón J, Darszon A, Beltrán C (2016) Speract, a sea urchin egg peptide that regulates sperm motility, also stimulates sperm mitochondrial metabolism. Biochim Biophys Acta Bioenerg 1857:415–426

    Article  CAS  Google Scholar 

  • Gibbons IR (1961) Structural asymmetry in cilia and flagella. Nature 190:1128–1129

    Article  CAS  PubMed  Google Scholar 

  • Gibbons IR (1981) Cilia and flagella of eukaryotes. J Cell Biol 91(3 Pt 2):107–124

    Article  CAS  PubMed Central  Google Scholar 

  • Gibbons IR, Rowe AJ (1965) Dynein: a protein with adenosine triphosphatase activity from cilia. Science (80-) 149:424–426

    Article  CAS  Google Scholar 

  • González-Cota AL, Silva PÂ, Carneiro J, Darszon A (2015) Single cell imaging reveals that the motility regulator speract induces a flagellar alkalinization that precedes and is independent of Ca2+ influx in sea urchin spermatozoa. FEBS Lett 589:2146–2154

    Article  CAS  PubMed  Google Scholar 

  • Granados-Gonzalez G, Mendoza-Lujambio I, Rodriguez E, Galindo BE, Beltrán C, Darszon A (2005) Identification of voltage-dependent Ca2+ channels in sea urchin sperm. FEBS Lett 579:6667–6672

    Article  CAS  PubMed  Google Scholar 

  • Gray J (1955) The movement of sea-urchin spermatozoa. J Exp Biol 32:775–801

    Google Scholar 

  • Gray J, Hancock GJ (1955) The propulsion of sea-urchin spermatozoa. J Exp Biol 32:802–814

    Google Scholar 

  • Guerrero A, Nishigaki T, Carneiro J, Tatsu Y, Wood CD, Darszon A, Yoshiro T, Wood CD, Darszon A (2010a) Tuning sperm chemotaxis by calcium burst timing. Dev Biol 344:52–65

    Article  CAS  PubMed  Google Scholar 

  • Guerrero A, Wood CD, Nishigaki T, Carneiro J, Darszon A (2010b) Tuning sperm chemotaxis. Biochem Soc Trans 38:1270–1274

    Article  CAS  PubMed  Google Scholar 

  • Guerrero A, Carneiro J, Pimentel A, Wood CD, Corkidi G, Darszon A (2011) Strategies for locating the female gamete: the importance of measuring sperm trajectories in three spatial dimensions. Mol Hum Reprod 17:511–523

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashi S, Shingyoji C (2008) Mechanism of flagellar oscillation-bending-induced switching of dynein activity in elastase-treated axonemes of sea urchin sperm. J Cell Sci 121:2833–2843

    Article  CAS  PubMed  Google Scholar 

  • Hayashibe K, Shingyoji C, Kamiya R (1997) Induction of temporary beating in paralyzed flagella of Chlamydomonas mutants by application of external force. Cell Motil Cytoskeleton 37:232–239

    Article  CAS  PubMed  Google Scholar 

  • Hines M, Blum JJ (1972) Bend propagation in flagella. Biophys J 23:41–57

    Article  Google Scholar 

  • Hiramoto Y, Baba S (1978) A quantitative analysis of flagellar movement in echinoderm spermatozoa. J Exp Biol 76:85–104

    Google Scholar 

  • Howard J (2008) Molecular mechanics of cells and tissues. Cell Mol Bioeng 1:24–32

    Article  Google Scholar 

  • Hussain YH, Guasto JS, Zimmer RK, Stocker R, Riffell JA (2016) Sperm chemotaxis promotes individual fertilization success in sea urchins. J Exp Biol 219:1458–1466

    Article  PubMed  Google Scholar 

  • Ishikawa R, Shingyoji C (2007) Induction of beating by imposed bending or mechanical pulse in demembranated, motionless sea urchin sperm flagella at very low ATP concentrations. Cell Struct Funct 32:17–27

    Article  CAS  PubMed  Google Scholar 

  • Jennings HS (1901) On the significance of the spiral swimming of organisms. Am Nat 35:369–378

    Article  Google Scholar 

  • Jikeli JF, Alvarez L, Friedrich BM, Wilson LG, Pascal R, Colin R, Pichlo M, Rennhack A, Brenker C, Kaupp UB (2015) Sperm navigation along helical paths in 3D chemoattractant landscapes. Nat Commun 6:7985

    Article  CAS  PubMed  Google Scholar 

  • Kaupp UB, Solzin J, Hildebrand E, Brown JE, Helbig A, Hagen V, Beyermann M, Pampaloni F, Weyand I (2003) The signal flow and motor response controling chemotaxis of sea urchin sperm. Nat Cell Biol 5:109–117

    Article  CAS  PubMed  Google Scholar 

  • Kaupp UB, Kashikar ND, Weyand I (2008) Mechanisms of sperm chemotaxis. Annu Rev Physiol 70:93–117

    Article  CAS  PubMed  Google Scholar 

  • King SM (2010) Sensing the mechanical state of the axoneme and integration of Ca2+ signaling by outer arm dynein. Cytoskeleton 67(4):207–213

    CAS  PubMed  Google Scholar 

  • Kirkman-Brown JC, Smith DJ (2011) Sperm motility: is viscosity fundamental to progress? Mol Hum Reprod 17:539–544

    Article  PubMed  Google Scholar 

  • Lauga E, Powers TR (2009) The hydrodynamics of swimming microorganisms. Rep Prog Phys 72:096601

    Article  Google Scholar 

  • Lillie FR (1913) The mechanism of fertilization. Science (80-) 38:524–528

    Article  CAS  Google Scholar 

  • Lin J, Nicastro D (2018) Asymmetric distribution and spatial switching of dynein activity generates ciliary motility. Science (80-) 360:eaar1968

    Article  CAS  Google Scholar 

  • Lindemann CB (2009) Heart of the beat (the flagellar beat, that is). Biophys J 97:2865–2866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindemann CB, Lesich KA (2010) Flagellar and ciliary beating: the proven and the possible. J Cell Sci 123:519–528

    Article  CAS  PubMed  Google Scholar 

  • Lindemann CB, Macauley LJ, Lesich KA (2005) The counterbend phenomenon in dynein-disabled rat sperm flagella and what it reveals about the interdoublet elasticity. Biophys J 89:1165–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotterhos K, Levitan D, Traits G (2010) Gamete release and spawning behavior in broadcast spawning marine invertebrates. In: The evolution of primary sexual characters in animals. pp 99–120

    Google Scholar 

  • Machin KE (1958) Wave propagation along flagella. J Exp Biol 35:796–806

    Google Scholar 

  • Marcos FHC, Powers TR, Stocker R (2012) Bacterial rheotaxis. Proc Natl Acad Sci 109:4780–4785

    Article  PubMed  PubMed Central  Google Scholar 

  • Mead KS, Denny MW (1995) The effects of hydrodynamic shear stress on fertilization and early development of the purple sea urchin Strongylocentrotus purpuratus. Biol Bull 188:46–56

    Article  CAS  PubMed  Google Scholar 

  • Miller RL (1985) Sperm chemo-orientation in the metazoa. In: Metz CB, Monroy A (eds) Biology of fertilization. Academic, New York, pp 275–337

    Chapter  Google Scholar 

  • Mizuno K, Padma P, Konno A, Satouh Y, Ogawa K, Inaba K (2009) A novel neuronal calcium sensor family protein, calaxin, is a potential Ca2+ −dependent regulator for the outer arm dynein of metazoan cilia and flagella. Biol Cell 101:91–103

    Article  CAS  PubMed  Google Scholar 

  • Mizuno K, Shiba K, Okai M, Takahashi Y, Shitaka Y, Oiwa K, Tanokura M, Inaba K (2012) Calaxin drives sperm chemotaxis by Ca2+−mediated direct modulation of a dynein motor. Proc Natl Acad Sci 109:20497–20502

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreau C, Giraldi L, Gadêlha H (2018) The asymptotic coarse-graining formulation of slender-rods, bio-filaments and flagella. J R Soc Interface 15:20180235

    Article  PubMed  PubMed Central  Google Scholar 

  • Morita Y, Shingyoji C (2004) Effects of imposed bending on microtubule sliding in sperm flagella. Curr Biol 14:2113–2118

    Article  CAS  PubMed  Google Scholar 

  • Nakano I, Kobayashi T, Yoshimura M, Shingyoji C (2003) Central-pair-linked regulation of microtubule sliding by calcium in flagellar axonemes. J Cell Sci 116:1627–1636

    Article  CAS  PubMed  Google Scholar 

  • Nicastro D, Schwartz C, Pierson J, Gaudette R, Porter ME, Mcintosh R (2006) The molecular architecture of axonemes revealed by cryoelectron tomography. Science (80-) 313:944–948

    Article  CAS  Google Scholar 

  • Nicastro D, Fu X, Heuser T, Tso A, Porter ME, Linck RW (2011) Cryo-electron tomography reveals conserved features of doublet microtubules in flagella. Proc Natl Acad Sci 108:E845–E853

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishigaki T, Darszon A (2000) Real-time measurements of the interactions between fluorescent speract and its sperm receptor. Dev Biol 223:17–26

    Article  CAS  PubMed  Google Scholar 

  • Nishigaki T, Zamudio FZ, Possani LD, Darszon A (2001) Time-resolved sperm responses to an egg peptide measured by stopped-flow fluorometry. Biochem Biophys Res Commun 284:531–535

    Article  CAS  PubMed  Google Scholar 

  • Nishigaki T, José O, González-Cota AL, Romero F, Treviño CL, Darszon A (2014) Intracellular pH in sperm physiology. Biochem Biophys Res Commun 450:1149–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuno M (1980) Inhibition and relaxation of sea urchin sperm flagella by vanadate. J Cell Biol 85:712–725

    Article  CAS  PubMed  Google Scholar 

  • Okuno M, Hiramoto Y (1976) Mechanical stimulation of starfish sperm flagella. J Exp Biol 65:401–413

    CAS  PubMed  Google Scholar 

  • Okuno BYM, Hiramoto Y (1979) Direct measurements of the stiffness of echinoderm sperm flagella. J Exp Biol 79:235–244

    CAS  Google Scholar 

  • Oriola D, Gadêlha H (2017) Nonlinear amplitude dynamics in flagellar beating. R Soc Open Sci 4:160698

    Article  PubMed  PubMed Central  Google Scholar 

  • Pelle DW, Brokaw CJ, Lesich KA, Lindemann CB (2009) Mechanical properties of the passive sea urchin sperm flagellum. Cell Motil Cytoskeleton 66:721–735

    Article  PubMed  Google Scholar 

  • Pfeffer W (1884) Locomotorische richtungsbewegungen durch chemische reize. Untersuchungen aus dem Bot Inst zu Tübingen 1, H.3:363

    Google Scholar 

  • Plouraboué F, Thiam EI, Delmotte B, Climent E (2017) Identification of internal properties of fibres and micro-swimmers. Proc R Soc A Math Phys Eng Sci 473:20160517

    Article  Google Scholar 

  • Porter ME, Sale WS (2000) The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility. J Cell Biol 151:37–42

    Article  PubMed Central  Google Scholar 

  • Priego-Espinosa DA, Darszon A, Guerrero A, González-Cota AL, Nishigaki T, Martínez-Mekler G, Carneiro J (2018) Modular mathematical analysis of the control of flagellar Ca2+-spike trains produced by CatSper and CaV channels in sea urchin sperm. bioRxiv. pp 1–43

    Google Scholar 

  • Purcell EM (1977) Life at low Reynolds number. Am J Phys 45:3–11

    Article  Google Scholar 

  • Ramírez-Gómez HV, Jiménez-Sabinina V, Tuval I, Velázquez-Pérez M, Beltrán C, Carneiro J, Wood C, Darszon A, Guerrero A (2018) Sperm chemotaxis is driven by the slope of the chemoattractant concentration field bioRxiv. p 148650

    Google Scholar 

  • Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL, Clapham DE (2001) A sperm ion channel required for sperm motility and male fertility. Nature 413:603–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds O (1883) XXIX. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos Trans R Soc Lond 174:935–982

    Google Scholar 

  • Riedel-Kruse IH, Hilfinger A (2007) How molecular motors shape the flagellar beat. HFSP J 1:192–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Riffell JA, Zimmer RK (2007) Sex and flow: the consequences of fluid shear for sperm egg interactions. J Exp Biol 210:3644–3660

    Article  PubMed  Google Scholar 

  • Rybalkin SD, Rybalkina IG, Shimizu-Albergine M, Tang XB, Beavo JA (2003) PDE5 is converted to an activated state upon cGMP binding to the GAF A domain. EMBO J 22:469–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sartori P, Geyer VF, Scholich A, Jülicher F, Howard J (2016) Dynamic curvature regulation accounts for the symmetric and asymmetric beats of Chlamydomonas flagella. eLife 5:1–26

    Article  Google Scholar 

  • Seifert R, Flick M, Bönigk W, Alvarez L, Trötschel C, Poetsch A, Müller A, Goodwin N, Pelzer P, Kashikar ND, Kremmer E, Jikeli J, Timmermann B, Kuhl H, Fridman D, Windler F, Kaupp UB, Strünker T (2015) The CatSper channel controls chemosensation in sea urchin sperm. EMBO J 34:379–392

    Article  CAS  PubMed  Google Scholar 

  • Shiba K, Baba SA, Inoue T, Yoshida M (2008) Ca2+ bursts occur around a local minimal concentration of attractant and trigger sperm chemotactic response. Proc Natl Acad Sci U S A 105:19312–19317

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith DJ, Gaffney EA, Gadelha H, Kapur N, Kirkman-Brown JC (2009) Bend propagation in the flagella of migrating human sperm, and its modulation by viscosity. Cell Motil Cytoskeleton 66:220–236

    Article  CAS  PubMed  Google Scholar 

  • Stokes GG (1851) On the effect of the internal friction of fluids on the motion of pendulums. Mathematical and physical papers. Cambridge University Press, Cambridge, pp 1–10

    Google Scholar 

  • Strünker T, Weyand I, Bönigk W, Van Q, Loogen A, Brown JE, Kashikar N, Hagen V, Krause E, Kaupp UB (2006) A K+-selective cGMP-gated ion channel controls chemosensation of sperm. Nat Cell Biol 8:1149–1154

    Article  CAS  PubMed  Google Scholar 

  • Strünker T, Alvarez L, Kaupp UB (2015) At the physical limit—chemosensation in sperm. Curr Opin Neurobiol 34:110–116

    Article  CAS  PubMed  Google Scholar 

  • Su Y-H, Vacquier VD (2006) Cyclic GMP-specific phosphodiesterase-5 regulates motility of sea urchin Spermatozoa. Mol Biol Cell 17:114–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su TT-W, Xue L, Ozcan A (2012) High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc Natl Acad Sci 109:16018–16022

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki N (1995) Structure, function and biosynthesis of sperm-activating peptides and fucose sulfate glycoconjugate in the extracellular coat of sea urchin eggs. Zool Sci 12:13–27

    Article  CAS  Google Scholar 

  • Taylor JR, Stocker R (2012) Trade-offs of chemotactic foraging in turbulent water. Science (80-) 338:675–679

    Article  CAS  Google Scholar 

  • Tornberg AK, Shelley MJ (2004) Simulating the dynamics and interactions of flexible fibers in Stokes flows. J Comput Phys 196:8–40

    Article  Google Scholar 

  • Vacquier VD, Loza-Huerta A, García-Rincón J, Darszon A, Beltrán C (2014) Soluble adenylyl cyclase of sea urchin spermatozoa. Biochim Biophys Acta Mol basis Dis 1842:2621–2628

    Article  CAS  Google Scholar 

  • Ward GE, Brokaw CJ, Garbers DL, Vacquier VD (1985) Chemotaxis of Arbacia punctulata spermatozoa to resact, a peptide from the egg jelly layer. J Cell Biol 101(6):2324–2329

    Article  CAS  PubMed  Google Scholar 

  • Warner FD, Satir P (1974) The structural basis of ciliary bend formation. J Cell Biol 63:35–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiggins CH, Goldstein RE (1998) Flexive and propulsive dynamics of elastica at low reynolds number. Phys Rev Lett 80:3879–3882

    Article  CAS  Google Scholar 

  • Wood CD, Darszon A, Whitaker M (2003) Speract induces calcium oscillations in the sperm tail. J Cell Biol 161:89–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood CD, Nishigaki T, Furuta T, Baba SA, Darszon A (2005) Real-time analysis of the role of Ca2+ in flagellar movement and motility in single sea urchin sperm. J Cell Biol 169:725–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood CD, Nishigaki T, Tatsu Y, Yumoto N, Baba SA, Whitaker M, Darszon A (2007) Altering the speract-induced ion permeability changes that generate flagellar Ca2+ spikes regulates their kinetics and sea urchin sperm motility. Dev Biol 306:525–537

    Article  CAS  PubMed  Google Scholar 

  • Wood CD, Guerrero A, Priego-Espinosa DA, Martínez-Mekler G, Carneiro J, Darszon A (2015) Sea urchin sperm chemotaxis. In: Flagellar mechanics and sperm guidance. Bentham Science Publishers, Sharjah

    Google Scholar 

  • Woolley DM (2003) Motility of spermatozoa at surfaces. Reproduction 126:259–270

    Article  CAS  PubMed  Google Scholar 

  • Woolley DM, Vernon GG (2001) A study of helical and planar waves on sea urchin sperm flagella, with a theory of how they are generated. J Exp Biol 204:1333–1345

    CAS  PubMed  Google Scholar 

  • Yoshida M, Murata M, Inaba K, Morisawa M (2002) A chemoattractant for ascidian spermatozoa is a sulfated steroid. Proc Natl Acad Sci U S A 99:14831–14836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer RK, Riffell JA (2011) Sperm chemotaxis, fluid shear, and the evolution of sexual reproduction. Proc Natl Acad Sci 108:13200–13205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

A.G. and C.B. acknowledge grants from the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica UNAM (PAPIIT/DGAPA) IA202417 to A.G. and IN206016 and IN215519 to C.B. A.G. acknowledge the Consejo Nacional de Ciencia y Tecnologıa (CONACyT, 252213). We thank CONACYT and PAPIIT for fellowships to H.R. I.T. acknowledges the support from the Spanish Ministry of Economy and Competitiveness Grants No. FIS2016-77692-C2-1-P. We also would like to thank Shirley Ainsworth and all her group for library services and to Juan Manuel Hurtado, Roberto Rodríguez, Omar Arriaga, and Arturo Ocádiz for computer services in IBT-UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adán Guerrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guerrero, A., Gadêlha, H., Ramírez-Gómez, H.V., Ramírez, R., Beltrán, C., Tuval, I. (2020). Chapter 12 Motility and Guidance of Sea Urchin Sperm. In: Yoshida, M., Asturiano, J. (eds) Reproduction in Aquatic Animals. Springer, Singapore. https://doi.org/10.1007/978-981-15-2290-1_13

Download citation

Publish with us

Policies and ethics